Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur Radiol ; 34(4): 2407-2415, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37736805

RESUMEN

OBJECTIVES: To evaluate the application of black-blood CT (BBCT) in carotid artery wall imaging and its accuracy in disclosing stenosis rate and plaque burden of carotid artery. METHODS: A total of 110 patients underwent contrast-enhanced CT scan with two phases, and BBCT images were obtained using contrast-enhancement (CE)-boost technology. Two radiologists independently scored subjective image quality on black-blood computerized tomography (BBCT) images using a 4-point scale and then further analyzed plaque types. The artery stenosis rate on BBCT was measured and compared with CTA. The plaque burden on BBCT was compared with that on high-resolution intracranial vessel wall MR imaging (VW-MR imaging). The kappa value and intraclass correlation coefficient (ICC) were used for consistency analysis. The diagnostic accuracy of BBCT for stenosis rate and plaque burden greater than 50% was evaluated by AUC. RESULTS: The subjective image quality scores of BBCT had good consistency between the two readers (ICC = 0.836, p < 0.001). BBCT and CTA had a good consistency in the identification of stenosis rate (p < 0.001). There was good consistency between BBCT and VW-MR in diagnosis of plaque burden (p < 0.001). As for plaque burden over 50%, BBCT had good sensitivity (93.10%) and specificity (73.33%), with an AUC of 0.950 (95%CI 0.838-0.993). Compared with CTA, BBCT had higher consistency with VW-MR in disclosing low-density plaques and mixed plaques (ICC = 0.931 vs 0.858, p < 0.001). CONCLUSIONS: BBCT can not only display the carotid artery wall clearly but also accurately diagnose the stenosis rate and plaque burden of carotid artery. CLINICAL RELEVANCE STATEMENT: Black-blood CT, as a novel imaging technology, can assist clinicians and radiologists in better visualizing the structure of the vessel wall and plaques, especially for patients with contraindication to MRI. KEY POINTS: • Black-blood CT can clearly visualize the carotid artery wall and plaque burden. • Black-blood CT is superior to conventional CTA with more accurate diagnosis of the carotid stenosis rate and plaque burden features.


Asunto(s)
Estenosis Carotídea , Placa Aterosclerótica , Humanos , Angiografía por Resonancia Magnética/métodos , Constricción Patológica , Arterias Carótidas/diagnóstico por imagen , Estenosis Carotídea/diagnóstico por imagen , Placa Aterosclerótica/diagnóstico , Tomografía Computarizada por Rayos X/métodos
2.
Eur Radiol ; 34(2): 1053-1064, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37581663

RESUMEN

OBJECTIVES: To explore the performance of low-dose computed tomography (LDCT) with deep learning reconstruction (DLR) for the improvement of image quality and assessment of lung parenchyma. METHODS: Sixty patients underwent chest regular-dose CT (RDCT) followed by LDCT during the same examination. RDCT images were reconstructed with hybrid iterative reconstruction (HIR) and LDCT images were reconstructed with HIR and DLR, both using lung algorithm. Radiation exposure was recorded. Image noise, signal-to-noise ratio, and subjective image quality of normal and abnormal CT features were evaluated and compared using the Kruskal-Wallis test with Bonferroni correction. RESULTS: The effective radiation dose of LDCT was significantly lower than that of RDCT (0.29 ± 0.03 vs 2.05 ± 0.65 mSv, p < 0.001). The mean image noise ± standard deviation was 33.9 ± 4.7, 39.6 ± 4.3, and 31.1 ± 3.2 HU in RDCT, LDCT HIR-Strong, and LDCT DLR-Strong, respectively (p < 0.001). The overall image quality of LDCT DLR-Strong was significantly better than that of LDCT HIR-Strong (p < 0.001) and comparable to that of RDCT (p > 0.05). LDCT DLR-Strong was comparable to RDCT in evaluating solid nodules, increased attenuation, linear opacity, and airway lesions (all p > 0.05). The visualization of subsolid nodules and decreased attenuation was better with DLR than with HIR in LDCT but inferior to RDCT (all p < 0.05). CONCLUSION: LDCT DLR can effectively reduce image noise and improve image quality. LDCT DLR provides good performance for evaluating pulmonary lesions, except for subsolid nodules and decreased lung attenuation, compared to RDCT-HIR. CLINICAL RELEVANCE STATEMENT: The study prospectively evaluated the contribution of DLR applied to chest low-dose CT for image quality improvement and lung parenchyma assessment. DLR can be used to reduce radiation dose and keep image quality for several indications. KEY POINTS: • DLR enables LDCT maintaining image quality even with very low radiation doses. • Chest LDCT with DLR can be used to evaluate lung parenchymal lesions except for subsolid nodules and decreased lung attenuation. • Diagnosis of pulmonary emphysema or subsolid nodules may require higher radiation doses.


Asunto(s)
Aprendizaje Profundo , Humanos , Mejoramiento de la Calidad , Dosis de Radiación , Pulmón/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos
3.
Heliyon ; 10(1): e22810, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38148801

RESUMEN

Objective: To evaluate the image quality of low-dose temporal bone computed tomography (CT) in otitis media and mastoiditis patients by using deep learning reconstruction (DLR). Materials and methods: A total of ninety-seven temporal bones from 53 consecutive adult patients who had suspected otitis media and mastoiditis and underwent temporal bone CT were prospectively enrolled. All patients underwent high resolution CT protocol (group A) and an additional low-dose protocol (group B). In group A, high resolution data were reconstructed by filter back projection (FBP). In group B, low-dose data were reconstructed by DLR mild (B1), DLR standard (B2) and DLR strong (B3). The objective image quality was analyzed by measuring the CT value and image noise on the transverse image and calculating the signal-to-noise ratio (SNR) on incudomallear joint, retroauricular muscle, vestibule and subcutaneous fat. Subjective image quality was analyzed by using a five-point scale to evaluate nine anatomical structures of middle and inner ear. The number of temporal bone lesions which involved in five structures of middle ear were assessed in group A, B1, B2 and B3 images. Results: There were no significant differences in the CT values of the four reconstruction methods at four structures (all p > 0.05). The DLR group B1, B2 and B3 had significantly less image noise and a significantly higher SNR than group A at four structures (all p < 0.001). The group B1 had comparable subjective image quality as group A in nine structures (all p > 0.05), however, the group B3 had lower subjective image quality than group A in modiolus, spiral osseous lamina and stapes (all p < 0.001), the group B2 had lower subjective image quality than group A in modiolus and spiral osseous lamina (both p < 0.05). The number of temporal bone lesions which involved in five structures for group A, B1 and B2 images were no significant difference (all p > 0.05), however, the number of temporal bone lesions which involved in mastoid for group B3 images were significantly more than group A (p < 0.05). The radiation dose of high resolution CT protocol and low-dose protocol were 0.55 mSv and 0.11 mSv, respectively. Conclusion: Compared with high resolution CT protocol, in the low-dose protocol of temporal bone CT, DLR mild and standard could improve the objective image quality, maintain good subjective image quality and satisfy clinical diagnosis of otitis media and mastoiditis patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...