Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(12): e2309902121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38483988

RESUMEN

FBXW7 is an E3 ubiquitin ligase that targets proteins for proteasome-mediated degradation and is mutated in various cancer types. Here, we use CRISPR base editors to introduce different FBXW7 hotspot mutations in human colon organoids. Functionally, FBXW7 mutation reduces EGF dependency of organoid growth by ~10,000-fold. Combined transcriptomic and proteomic analyses revealed increased EGFR protein stability in FBXW7 mutants. Two distinct phosphodegron motifs reside in the cytoplasmic tail of EGFR. Mutations in these phosphodegron motifs occur in human cancer. CRISPR-mediated disruption of the phosphodegron motif at T693 reduced EGFR degradation and EGF growth factor dependency. FBXW7 mutant organoids showed reduced sensitivity to EGFR-MAPK inhibitors. These observations were further strengthened in CRC-derived organoid lines and validated in a cohort of patients treated with panitumumab. Our data imply that FBXW7 mutations reduce EGF dependency by disabling EGFR turnover.


Asunto(s)
Proteínas F-Box , Neoplasias , Humanos , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Factor de Crecimiento Epidérmico/genética , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/metabolismo , Proteómica , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteínas F-Box/genética
2.
J Cell Sci ; 137(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38345099

RESUMEN

Glycosylated mucin proteins contribute to the essential barrier function of the intestinal epithelium. The transmembrane mucin MUC13 is an abundant intestinal glycoprotein with important functions for mucosal maintenance that are not yet completely understood. We demonstrate that in human intestinal epithelial monolayers, MUC13 localized to both the apical surface and the tight junction (TJ) region on the lateral membrane. MUC13 deletion resulted in increased transepithelial resistance (TEER) and reduced translocation of small solutes. TEER buildup in ΔMUC13 cells could be prevented by addition of MLCK, ROCK or protein kinase C (PKC) inhibitors. The levels of TJ proteins including claudins and occludin were highly increased in membrane fractions of MUC13 knockout cells. Removal of the MUC13 cytoplasmic tail (CT) also altered TJ composition but did not affect TEER. The increased buildup of TJ complexes in ΔMUC13 and MUC13-ΔCT cells was dependent on PKC. The responsible PKC member might be PKCδ (or PRKCD) based on elevated protein levels in the absence of full-length MUC13. Our results demonstrate for the first time that a mucin protein can negatively regulate TJ function and stimulate intestinal barrier permeability.


Asunto(s)
Proteína Quinasa C , Proteínas de Uniones Estrechas , Humanos , Proteínas de Uniones Estrechas/metabolismo , Proteína Quinasa C/metabolismo , Intestinos , Mucosa Intestinal/metabolismo , Uniones Estrechas/metabolismo , Ocludina , Mucinas/metabolismo , Células Epiteliales/metabolismo
3.
Cell ; 187(3): 712-732.e38, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38194967

RESUMEN

Human brain development involves an orchestrated, massive neural progenitor expansion while a multi-cellular tissue architecture is established. Continuously expanding organoids can be grown directly from multiple somatic tissues, yet to date, brain organoids can solely be established from pluripotent stem cells. Here, we show that healthy human fetal brain in vitro self-organizes into organoids (FeBOs), phenocopying aspects of in vivo cellular heterogeneity and complex organization. FeBOs can be expanded over long time periods. FeBO growth requires maintenance of tissue integrity, which ensures production of a tissue-like extracellular matrix (ECM) niche, ultimately endowing FeBO expansion. FeBO lines derived from different areas of the central nervous system (CNS), including dorsal and ventral forebrain, preserve their regional identity and allow to probe aspects of positional identity. Using CRISPR-Cas9, we showcase the generation of syngeneic mutant FeBO lines for the study of brain cancer. Taken together, FeBOs constitute a complementary CNS organoid platform.


Asunto(s)
Encéfalo , Organoides , Humanos , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Sistema Nervioso Central/metabolismo , Matriz Extracelular/metabolismo , Células Madre Pluripotentes/metabolismo , Prosencéfalo/citología , Técnicas de Cultivo de Tejidos , Células Madre/metabolismo , Morfogénesis
4.
Cell Stem Cell ; 31(2): 227-243.e12, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38215738

RESUMEN

The conjunctival epithelium covering the eye contains two main cell types: mucus-producing goblet cells and water-secreting keratinocytes, which present mucins on their apical surface. Here, we describe long-term expanding organoids and air-liquid interface representing mouse and human conjunctiva. A single-cell RNA expression atlas of primary and cultured human conjunctiva reveals that keratinocytes express multiple antimicrobial peptides and identifies conjunctival tuft cells. IL-4/-13 exposure increases goblet and tuft cell differentiation and drastically modifies the conjunctiva secretome. Human NGFR+ basal cells are identified as bipotent conjunctiva stem cells. Conjunctival cultures can be infected by herpes simplex virus 1 (HSV1), human adenovirus 8 (hAdV8), and SARS-CoV-2. HSV1 infection was reversed by acyclovir addition, whereas hAdV8 infection, which lacks an approved drug therapy, was inhibited by cidofovir. We document transcriptional programs induced by HSV1 and hAdV8. Finally, conjunctival organoids can be transplanted. Together, human conjunctiva organoid cultures enable the study of conjunctival (patho)-physiology.


Asunto(s)
Conjuntiva , Células Caliciformes , Humanos , Ratones , Animales , Conjuntiva/metabolismo , Células Caliciformes/metabolismo , Epitelio , Interleucina-13 , Homeostasis , Organoides
6.
Anal Chim Acta ; 1102: 53-62, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32043996

RESUMEN

Chemical cross-linking would conceivably cause structural disruption of a protein, but few cross-linkers have been fully evaluated in this aspect. Furthermore, integral membrane proteins may differ from soluble proteins in the selection of suitable cross-linkers, which has never been investigated. In this study, we systematically evaluated the impact of five conventional cross-linkers targeting Lys, Asp and Glu, and two Arg-reactive cross-linkers on the structural and functional integrity of two G protein-coupled receptors (GPCRs). Perturbation of the receptor structure and ligand-binding activity was observed, depending on the receptor and cross-linking conditions. In particular, our study demonstrated that the concentrations of PDH and KArGO need to be fine-tuned in order to minimize the structural and functional disturbance of specific GPCRs. A set of amenable cross-linkers was selected to acquire the most comprehensive cross-link maps for two GPCRs. Our in-depth cross-linking mass spectrometry (CXMS) analysis has revealed dynamic features of structural regions in GPCRs that are not observable in the crystal structures. Thus, CXMS analysis of GPCRs using the expanded toolkit would facilitate structural modeling of uncharacterized receptors and gain new insights into receptor-ligand interactions.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Receptor del Péptido 1 Similar al Glucagón/química , Receptores Adrenérgicos alfa 2/química , Cromatografía en Gel , Cromatografía Liquida , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Ligandos , Simulación de Dinámica Molecular , Conformación Proteica , Estabilidad Proteica , Receptores Adrenérgicos alfa 2/metabolismo , Espectrometría de Masas en Tándem/métodos
7.
Gene Expr ; 19(1): 25-35, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30135001

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a global health problem characterized by excessive accumulation of fat in the liver without effect of other pathological factors including hepatitis infection and alcohol abuse. Current studies indicate that gene factors play important roles in the development of NAFLD. However, the molecular characteristics of differentially expressed genes (DEGs) and associated mechanisms with NAFLD have not been well elucidated. Using two microarray data associated with the gene expression profiling in liver tissues of NAFLD mice models, we identified and selected several common key DEGs that contributed to NAFLD. Based on bioinformatics analysis, we discovered that the DEGs were associated with a variety of biological processes, cellular components, and molecular functions and were also related to several significant pathways. Via pathway crosstalk analysis based on overlapping DEGs, we observed that the identified pathways could form large and complex crosstalk networks. Besides, large and complex protein interaction networks of DEGs were further constructed. In addition, many hub host factors with a high degree of connectivity were identified based on interaction networks. Furthermore, significant modules in interaction networks were found, and the DEGs in the identified modules were found to be enriched with distinct pathways. Taken together, these results suggest that the key DEGs, associated pathways, and modules contribute to the development of NAFLD and might be used as novel molecular targets for the treatment of NAFLD.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Enfermedad del Hígado Graso no Alcohólico/genética , Animales , Biología Computacional/métodos , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Ontología de Genes , Redes Reguladoras de Genes/genética , Ratones , Ratones Endogámicos C57BL , Mapas de Interacción de Proteínas/genética , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...