Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2312704, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38615260

RESUMEN

Sputtered indium tin oxide (ITO) fulfills the requirements of top transparent electrodes (TTEs) in semitransparent perovskite solar cells (PSCs) and stacked tandem solar cells (TSCs), as well as of the recombination layers in monolithic TSCs. However, the high-energy ITO particles will cause damage to the devices. Herein, the interface reactive sputtering strategy is proposed to construct cost-effective TTEs with high transmittance and excellent carrier transporting ability. Polyethylenimine (PEI) is chosen as the interface reactant that can react with sputtered ITO nanoparticles, so that, coordination compounds can be formed during the deposition process, facilitating the carrier transport at the interface of C60/PEI/ITO. Besides, the impact force of energetic ITO particles is greatly alleviated, and the intactness of the underlying C60 layer and perovskite layer is guaranteed. Thus, the prepared semitransparent subcells achieve a significantly enhanced power conversion efficiency (PCE) of 19.17%, surpassing those based on C60/ITO (11.64%). Moreover, the PEI-based devices demonstrate excellent storage stability, which maintains 98% of their original PCEs after 2000 h. On the strength of the interface reactive sputtering ITO electrode, a stacked all-perovskite TSC with a PCE of 26.89% and a monolithic perovskite-organic TSC with a PCE of 24.33% are successfully fabricated.

2.
Adv Mater ; 36(1): e2310203, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37967552

RESUMEN

Synergistic morphology and defects management at the buried perovskite interface are challenging but crucial for the further improvement of inverted perovskite solar cells (PerSCs). Herein, an amphoteric organic salt, 2-(4-fluorophenyl)ethylammonium-4-methyl benzenesulfonate (4FPEAPSA), is designed to optimize the film morphology and energy level alignment at the perovskite buried interface. 4FPEAPSA treatment promotes the growth of a void-free, coarse-grained, and hydrophobic film by inducing the crystal orientation. Besides, the dual-functional 4FPEAPSA can chemically interact with the perovskite film, and passivate the defects of iodine and formamidine vacancies, tending to revert the fermi level of perovskite to its defect-free state. Meanwhile, the formation of a p-type doping buried interface can facilitate the interfacial charge extraction and transport of PerSCs for reduced carrier recombination loss. Consequently, 4FPEAPSA treatment improves the efficiency of the perovskite devices to 25.03% with better storage, heat, and humidity stability. This work contributes to strengthening the systematic understanding of the perovskite buried interface, providing a synergetic approach to realize precise morphology control, effective defect suppression, and energy level alignment for efficient PerSCs.

3.
Adv Mater ; 35(48): e2307502, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37755234

RESUMEN

Rational selection and design of recombination electrodes (RCEs) are crucial to enhancing the power conversion efficiency (PCE) and stability of monolithic tandem solar cells (TSCs). Sputtered indium tin oxide (ITO) with high conductivity and excellent transmittance is introduced as RCE in perovskite/organic TSCs. To prevent high-energy ITO particles destroy the underlying material during sputtering, dual-functional transport and protective layer (C1) is employed. The styryl group in C1 can be thermally crosslinked to serve as a sputtering protective layer. Meanwhile, the conjugated phenanthroline skeleton in C1 shows high electron mobility and hole blocking capability to promote the electron transport process at the interfaces and effectively reduce charge accumulation. Monolithic perovskite/organic TSC with high PCE of 24.07% and excellent stability is demonstrated by stacking a 1.77 eV bandgap perovskite layer and a 1.35 eV bandgap organic active layer. This strategy provides new insights for overcoming the fundamental efficiency limits of single-junction devices and promotes the further development of TSC devices.

4.
Chem Commun (Camb) ; 59(41): 6255-6258, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37139609

RESUMEN

Large open-circuit voltage (Voc) loss is the main issue limiting the efficiency improvement in wide bandgap perovskite solar cells (PerSCs). Herein, a facile buried interface treatment by hexachlorotriphosphazene is developed to suppress the Voc loss. The PerSCs include a [Cs0.22FA0.78Pb(I0.85Br0.15)3]0.97(MAPbCl3)0.03 (1.67 eV) absorber and deliver an efficiency of 21.47% and a Voc of 1.21 V (Voc loss of 0.46 V). More importantly, the unencapsulated PerSCs maintain 90% of the initial efficiency after aging 500 h in N2.

5.
Small ; 18(50): e2205128, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36310144

RESUMEN

The typical thickness of the photoactive layer in organic solar cells (OSCs) is around 100 nm, which limits the absorption efficiency of the incident light and the power conversion efficiency (PCE) of OSCs. Therefore, light-trapping schemes to reduce the optical losses in the thin photoactive layers are critically important for efficient OSCs. Herein, light-trapping and electron-collection dual-functional small organic molecules, N,N,N',N'-tetraphenyloxalamide (TPEA) and N,N,N',N'-tetraphenylmalonamide (TPMA), are designed and synthesized by a one-step acylation reaction. Driven by strong intermolecular force, TPEA and TPMA tend to self-aggregate into hemispherical light-trapping nanodots on the photoactive layer, resulting in enhanced light harvesting. Meanwhile, TPEA and TPMA demonstrate high electron mobility and excellent electron-collection ability.  Compared with the device without cathode buffer layer (CBL, PCE = 14.09%), PM6:BTP-eC9 based OSCs with TPEA and TPMA light-trapping CBLs demonstrate greatly enhanced PCE of 16.21% and 17.85%, respectively. Furthermore, a record PCE of 19.02% can be achieved for PM6:BTP-eC9:PC71 BM based ternary OSC with TPMA light-trapping CBL. Moreover, TPMA exhibits a low synthesis cost of only 0.61 $ g-1 with high yield. These findings could open a window for the rational design of multifunctional CBLs for efficient and stable OSCs.

6.
J Org Chem ; 87(19): 12596-12607, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36162131

RESUMEN

We present a convenient and efficient protocol to synthesize quinolines and quinazolines in one pot under mild conditions. A variety of substituted quinolines were synthesized in good to excellent yields (up to 97% yield) from the dehydrogenative cyclizations of 2-aminoaryl alcohols and ketones catalyzed by readily available Co(OAc)2·4H2O. This cobalt catalytic system also showed high activity in the reactions of 2-aminobenzyl alcohols with nitriles, affording various quinazoline derivatives (up to 95% yield). The present protocol offers an environmentally benign approach for the synthesis of N-heterocycles by employing an earth-abundant cobalt salt under ligand-free conditions.

7.
Small ; 18(22): e2201820, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35502139

RESUMEN

The organic-inorganic halide perovskite solar cell (PerSC) is the state-of-the-art emerging photovoltaic technology. However, the environmental water/moisture and temperature-induced intrinsic degradation and phase transition of perovskite greatly retard the commercialization process. Herein, a dual-functional organic ligand, 4,7-bis((4-vinylbenzyl)oxy)-1,10-phenanthroline (namely, C1), with crosslinkable styrene side-chains and chelatable phenanthroline backbone, synthesized via a cost-effective Williamson reaction, is introduced for collaborative electrode interface and perovskite grain boundaries (GBs) engineering. C1 can chemically chelate with Sn4+ in the SnO2 electron transport layer and Pb2+ in the perovskite layer via coordination bonds, suppressing nonradiative recombination caused by traps/defects existing at the interface and GBs. Meanwhile, C1 enables in situ crosslinking via thermal-initiated polymerization to form a hydrophobic and stable polymer network, freezing perovskite morphology, and resisting moisture degradation. Consequently, through collaborative interface-grain engineering, the resulting PerSCs demonstrate high power conversion efficiency of 24.31% with excellent water/moisture and thermal stability. The findings provide new insights of collaborative interface-grain engineering via a crosslinkable and chelatable organic ligand for achieving efficient and stable PerSCs.

8.
ACS Appl Mater Interfaces ; 14(1): 1280-1289, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34978428

RESUMEN

The development of new electron transporting layer (ETL) materials to improve the charge carrier extraction and collection ability between cathode and the active layer has been demonstrated to be an effective approach to enhance the photovoltaic performance of organic solar cells (OSCs). Herein, water-soluble carbon dots (CDs) as ETL material have been creatively synthesized by a vigorous chemical reaction between polyethylenimine (PEI) and 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) via a simple one-step hydrothermal method. Taking full advantage of the high electron transfer property of PTCDA and the work function (WF) reduction ability of PEI, CD gained high electron mobility due to its large π-conjugated area and reduced the WF of indium tin oxide (ITO) by 0.75 eV. As for the photovoltaic performance of devices, inverted OSCs based on CDs have achieved a high power conversion efficiency (PCE) of 17.35%, exhibiting no burn-in effect with no reduction in PCE after more than 4000 h of storage. The successful application of CDs in OPV has developed a new avenue for designing efficient ETL materials that benefits the photovoltaic performance of OSCs.

9.
ACS Appl Mater Interfaces ; 14(1): 1187-1194, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34958190

RESUMEN

Power conversion efficiencies (PCEs) and device stability are two key technical factors restricting the commercialization of organic solar cells (OSCs). In the past decades, though the PCEs of OSCs have been significantly enhanced, device instability, especially in the state-of-the-art nonfullerene system, still needs to be solved. In this work, an effective crosslinker (namely, DTODF-4F), with conjugated fluorene-based backbone and crosslinkable epoxy side-chains, has been designed and synthesized, which is introduced to enhance the morphological stabilization of the PM6:Y6-based film. This crosslinker with two epoxy groups can be in situ crosslinked into a stable network structure under ultraviolet radiation. We demonstrate that DTODF-4F, which acted as a third component, can promote the exciton dissociation rate and reduce traps/defects, finally resulting in the enhancement of efficiency. In particular, the OSC devices exhibit better stability under continuous heating owing to the morphology fixation of the bulk heterojunction. This work drives the development direction of morphological stabilization to further improve the performance and stability of OSCs.

10.
J Phys Chem Lett ; 12(49): 11772-11778, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34855410

RESUMEN

The narrow bandgap Pb-Sn hybrid perovskite materials with lower toxicities and adjustable optical bandgaps provide the opportunity to construct high-efficiency perovskite solar cells (PerSCs). To solve the issues of the uncontrollable crystallization rate of Pb-Sn perovskite and easy oxidation of Sn2+, a ß-diketone-based additive, N,N,N',N'-tetraphenylmalondiamide (TPMA), is introduced to coordinate with Pb2+ and Sn2+. The introduction of TPMA can improve the morphology of perovskite films and decrease the density of defect states, resulting in an enhanced power conversion efficiency of >20% and improved stability. The PerSC without encapsulation retains 94% of its initial efficiency after being stored for 1000 h in a nitrogen-filled glovebox and shows a lifetime of only 8% degradation after being continuously heated for 100 h at 80 °C. This work represents a new strategy of introducing a ß-diketone ligand as an additive in precursor engineering for achieving efficient and stable PerSCs.

11.
Materials (Basel) ; 13(14)2020 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-32664636

RESUMEN

A Gleeble-2000D thermal simulation machine was used to investigate the high-temperature hot compression deformation of an extruded Mg-16Al magnesium alloy under various strain rates (0.0001-0.1 s-1) and temperatures (523-673 K). Combined with the strain compensation Arrhenius equation and the Zener-Hollomon (Z) parameter, the constitutive equation of the alloy was constructed. The average deformation activation energy, Q, was 144 KJ/mol, and the strain hardening index (n ≈ 3) under different strain variables indicated that the thermal deformation mechanism was controlled by dislocation slip. The Mg-16Al alloy predicted by the Sellars model was characterized by a small dynamic recrystallization (DRX) critical strain, indicating that Mg17Al12 particles precipitated during the compression deformation promoted the nucleation of DRX. Hot processing maps of the alloy were established based on the dynamic material model. These maps indicated that the high Al content, precipitation of numerous Mg17Al12 phases, and generation of microcracks at low temperature and low strain rate led to an unstable flow of the alloy. The range of suitable hot working parameters of the experimental alloy was relatively small, i.e., the temperature range was 633-673 K, and the strain rate range was 0.001-0.1 s-1.

12.
Macromol Rapid Commun ; 40(13): e1900146, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31058388

RESUMEN

Synthetic chiral helical polymers have achieved impressive progress in past few decades. Unfortunately, how to construct chiral helical polymer-derived functional materials still remains highly challenging. The present contribution reports an unprecedented, one-step strategy for judiciously combining chiral helical polymer with graphene to construct chiral hybrid foams. Graphene oxide (GO), ascorbic acid (L-AA), Rh catalyst, and an achiral acetylenic monomer bearing phenylboronic acid group are mixed in an aqueous dispersion. Under mild conditions, the monomer underwent polymerization; meanwhile GO transforms into reduced graphene oxide (RGO) which in situ self-assembles to construct a 3D porous structure. Herein, L-AA simultaneously plays double roles: 1) working as a chiral source for the monomer to undergo helix-sense-selective polymerization or transferring its chirality to the polymer chains via forming borate structure; and 2) working as a reducing agent for reducing GO. The preparation strategy combines four processes into one single step: monomer polymerization, chirality transfer, reduction of GO, and RGO's self-assembly. The eventually obtained chiral hybrid foams demonstrate advantages of porous structure, chirality, and reversible borate functional groups. The established preparation strategy promises a potent platform for conveniently constructing advanced chiral polymeric materials and even chiral hybrids starting from achiral monomers.


Asunto(s)
Ácido Ascórbico/química , Grafito/química , Polímeros/química , Catálisis , Polimerizacion , Rutenio/química , Estereoisomerismo
13.
Sci Rep ; 7(1): 8748, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28821759

RESUMEN

The Chinese National Forest Inventory (NFI) has reported increased forest coverage in China since 2000, however, the new satellite-based dataset Global Forest Change (GFC) finds decreased forest coverage. In this study, four satellite datasets are used to investigate this discrepancy in forest cover change estimates in China between 2000 and 2013: forest cover change estimated from MODIS Normalized Burn Ratio (NBR), existing MODIS Land Cover (LC) and Vegetation Continuous Fields (VCF) products, and the Landsat-based GFC. Among these satellite datasets, forest loss shows much better agreement in terms of total change area and spatial pattern than do forest gain. The net changes in forest cover as a proportion of China's land area varied widely from increases of 1.56% in NBR, 1.93% in VCF, and 3.40% in LC to a decline of -0.40% in GFC. The magnitude of net forest increase derived from MODIS datasets (1.56-3.40%) is lower than that reported in NFI (3.41%). Algorithm parameters, different spatial resolutions, and inconsistent forest definitions could be important sources of the discrepancies. Although several MODIS datasets support an overall forest increase in China, the direction and magnitude of net forest change is still unknown due to the large uncertainties in satellite-derived estimates.


Asunto(s)
Monitoreo del Ambiente , Bosques , China , Bases de Datos Factuales , Geografía , Imágenes Satelitales
14.
PLoS One ; 12(4): e0175627, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28422982

RESUMEN

The article examines the detailed spatial and temporal distributions of coastal reclamation in the northwest coast of Bohai Bay experiencing rapid coastal reclamation in China from 1974 to 2010 in annual intervals. Moreover, soil elements properties and spatial distribution in reclaimed area and inform the future coastal ecosystems management was also analyzed. The results shows that 910.7 km2 of coastal wetlands have been reclaimed and conversed to industrial land during the past 36 years. It covers intertidal beach, shallow sea and island with a percentage of 76.0%, 23.5% and 0.5%, respectively. The average concentration of Mn is 686.91mg/kg and the order of concentration of heavy metal are Cr>Zn>As>Ni>Cu>Pb>Cd>Hg. We used the "space for time substitution" method to test the soil properties changes after reclamation. The potential ecological risk of heavy metal is in low level and the risk of Cd and As is relatively higher. The ecosystem-based coastal protection and management are urgent to support sustainable coastal ecosystems in Bohai bay in the future.


Asunto(s)
Bahías/química , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Suelo/química , Contaminantes Químicos del Agua/análisis , China , Conservación de los Recursos Naturales , Ecosistema , Sedimentos Geológicos/química , Desarrollo Industrial/ética , Medición de Riesgo , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...