Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Redox Biol ; 63: 102736, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37216700

RESUMEN

Exacerbated hypochlorite (OCl-) production is linked to neurodegenerative processes, but there is growing evidence that lower levels of hypochlorite activity are important to protein homeostasis. In this study we characterise the effects of hypochlorite on the aggregation and toxicity of amyloid beta peptide 1-42 (Aß1-42), a major component of amyloid plaques that form in the brain in Alzheimer's disease. Our results demonstrate that treatment with hypochlorite promotes the formation of Aß1-42 assemblies ≥100 kDa that have reduced surface exposed hydrophobicity compared to the untreated peptide. This effect is the result of the oxidation of Aß1-42 at a single site as determined by mass spectrometry analysis. Although treatment with hypochlorite promotes the aggregation of Aß1-42, the solubility of the peptide is enhanced and amyloid fibril formation is inhibited as assessed by filter trap assay, thioflavin T assay and transmission electron microscopy. The results of in vitro assays using SH-SY5Y neuroblastoma cells show that pre-treatment of Aß1-42 with a sub-stoichiometric amount of hypochlorite substantially reduces its toxicity. The results of flow cytometry analysis and internalisation assays indicate that hypochlorite-induced modification of Aß1-42 reduces its toxicity via at least two-distinct mechanism, reducing the total binding of Aß1-42 to the surface of cells and facilitating the cell surface clearance of Aß1-42 to lysosomes. Our data is consistent with a model in which tightly regulated production of hypochlorite in the brain is protective against Aß-induced toxicity.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Ácido Hipocloroso , Fragmentos de Péptidos/farmacología
3.
Cells ; 11(7)2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35406715

RESUMEN

Plasminogen activator inhibitor type-2 (PAI-2), a member of the serpin family, is dramatically upregulated during pregnancy and in response to inflammation. Although PAI-2 exists in glycosylated and non-glycosylated forms in vivo, the majority of in vitro studies of PAI-2 have exclusively involved the intracellular non-glycosylated form. This study shows that exposure to inflammation-associated hypochlorite induces the oligomerisation of PAI-2 via a mechanism involving dityrosine formation. Compared to plasminogen activator inhibitor type-1 (PAI-1), both forms of PAI-2 are more resistant to hypochlorite-induced inactivation of its protease inhibitory activity. Holdase-type extracellular chaperone activity plays a putative non-canonical role for PAI-2. Our data demonstrate that glycosylated PAI-2 more efficiently inhibits the aggregation of Alzheimer's disease and preeclampsia-associated amyloid beta peptide (Aß), compared to non-glycosylated PAI-2 in vitro. However, hypochlorite-induced modification of non-glycosylated PAI-2 dramatically enhances its holdase activity by promoting the formation of very high-molecular-mass chaperone-active PAI-2 oligomers. Both PAI-2 forms protect against Aß-induced cytotoxicity in the SH-SY5Y neuroblastoma cell line in vitro. In the villous placenta, PAI-2 is localised primarily to syncytiotrophoblast with wide interpersonal variation in women with preeclampsia and in gestational-age-matched controls. Although intracellular PAI-2 and Aß staining localised to different placental cell types, some PAI-2 co-localised with Aß in the extracellular plaque-like aggregated deposits abundant in preeclamptic placenta. Thus, PAI-2 potentially contributes to controlling aberrant fibrinolysis and the accumulation of misfolded proteins in states characterised by oxidative and proteostasis stress, such as in Alzheimer's disease and preeclampsia.


Asunto(s)
Inhibidor 2 de Activador Plasminogénico , Inhibidores de Serina Proteinasa , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Femenino , Humanos , Ácido Hipocloroso , Inflamación , Péptidos y Proteínas de Señalización Intracelular , Chaperonas Moleculares , Placenta/metabolismo , Inhibidor 2 de Activador Plasminogénico/metabolismo , Preeclampsia/metabolismo , Embarazo
5.
Neurotox Res ; 37(4): 1029-1035, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32026360

RESUMEN

Hyperphosphorylated tau is an important pathological agent in Alzheimer's disease (AD). Tau effluxes from the brain to the blood could potentially stimulate the production of naturally occurring antibodies (NAbs). We aimed to investigate whether NAbs to tau (NAbs-tau) was generated in human blood and to figure out the alteration of plasma NAbs-tau level in AD patients. About 192 AD patients and 192 age-matched and non-demented controls (NC) were enrolled in the present study. Immunofluorescence staining and western blot assays were used to confirm the existence of NAbs-tau in human blood. The plasma level of NAbs-tau in NC and AD group was analyzed by ELISA. Immunofluorescence staining and western blot assays confirmed the existence of NAbs-tau in human blood. However, no significant difference in the plasma level of NAbs-tau was observed between NC and AD group. Furthermore, the plasma level of NAbs-tau had no significant correlation with MMSE scores. The present study confirmed that NAbs-tau exists in human blood but does not differ in level between the NC and AD group. Plasma NAbs-tau is not a reliable biomarker for AD.


Asunto(s)
Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/diagnóstico por imagen , Autoanticuerpos/sangre , Proteínas tau/sangre , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/epidemiología , Animales , Biomarcadores/sangre , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad
6.
PLoS One ; 15(1): e0227258, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31978074

RESUMEN

BACKGROUND: The molecular changes involved in Alzheimer's disease (AD) progression remain unclear since we cannot easily access antemortem human brains. Some non-mammalian vertebrates such as the zebrafish preserve AD-relevant transcript isoforms of the PRESENILIN genes lost from mice and rats. One example is PS2V, the alternative transcript isoform of the PSEN2 gene. PS2V is induced by hypoxia/oxidative stress and shows increased expression in late onset, sporadic AD brains. A unique, early onset familial AD mutation of PSEN2, K115fs, mimics the PS2V coding sequence suggesting that forced, early expression of PS2V-like isoforms may contribute to AD pathogenesis. Here we use zebrafish to model the K115fs mutation to investigate the effects of forced PS2V-like expression on the transcriptomes of young adult and aged adult brains. METHODS: We edited the zebrafish genome to model the K115fs mutation. To explore its effects at the molecular level, we analysed the brain transcriptome and proteome of young (6-month-old) and aged (24-month-old) wild type and heterozygous mutant female sibling zebrafish. Finally, we used gene co-expression network analysis (WGCNA) to compare molecular changes in the brains of these fish to human AD. RESULTS: Young heterozygous mutant fish show transcriptional changes suggesting accelerated brain aging and increased glucocorticoid signalling. These early changes precede a transcriptional 'inversion' that leads to glucocorticoid resistance and other likely pathological changes in aged heterozygous mutant fish. Notably, microglia-associated immune responses regulated by the ETS transcription factor family are altered in both our zebrafish mutant model and in human AD. The molecular changes we observe in aged heterozygous mutant fish occur without obvious histopathology and possibly in the absence of Aß. CONCLUSIONS: Our results suggest that forced expression of a PS2V-like isoform contributes to immune and stress responses favouring AD pathogenesis. This highlights the value of our zebrafish genetic model for exploring molecular mechanisms involved in AD pathogenesis.


Asunto(s)
Envejecimiento/genética , Enfermedad de Alzheimer/genética , Encéfalo/patología , Redes Reguladoras de Genes , Presenilina-1/genética , Proteínas de Pez Cebra/genética , Envejecimiento/patología , Empalme Alternativo , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/patología , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Encéfalo/inmunología , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Mutación del Sistema de Lectura , Edición Génica , Heterocigoto , Humanos , Microglía/inmunología , Microglía/patología , Presenilina-1/metabolismo , Presenilina-2/genética , Presenilina-2/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteómica , RNA-Seq , Regulación hacia Arriba , Pez Cebra , Proteínas de Pez Cebra/metabolismo
7.
Aging (Albany NY) ; 11(17): 6762-6791, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31479419

RESUMEN

p75 neurotrophin receptor (p75NTR) has been implicated in Alzheimer's disease (AD). However, whether p75NTR is involved in Tau hyperphosphorylation, one of the pathologies observed in AD, remains unclear. In our previous study, the extracellular domain of p75NTR blocked amyloid beta (Aß) toxicity and attenuated Aß-induced Tau hyperphosphorylation. Here we show that, in the absence of Aß, p75NTR regulates Tau phosphorylation in the transgenic mice with the P301L human Tau mutation (pR5). The knockout of p75NTR in pR5 mice attenuated the phosphorylation of human Tau. In addition, the elevated activity of kinases responsible for Tau phosphorylation including glycogen synthase kinase 3 beta; cyclin-dependent-kinase 5; and Rho-associated protein kinase was also inhibited when p75NTR is knocked out in pR5 mice at 9 months of age. The increased caspase-3 activity observed in pR5 mice was also abolished in the absence of p75NTR. Our study also showed that p75NTR is required for Aß- and pro-brain derived neurotrophin factor (proBDNF)-induced Tau phosphorylation, in vitro. Overall, our data indicate that p75NTR is required for Tau phosphorylation, a key event in the formation of neurofibrillary tangles, another hallmark of AD. Thus, targeting p75NTR could reduce or prevent the pathologic hyperphosphorylation of Tau.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Proteínas tau/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Mutación , Fosforilación , Proteínas tau/genética
8.
Mol Cell Neurosci ; 99: 103395, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31422108

RESUMEN

BACE1 is a transmembrane aspartic protease that cleaves various substrates and it is required for normal brain function. BACE1 expression is high during early development, but it is reduced in adulthood. Under conditions of stress and injury, BACE1 levels are increased; however, the underlying mechanisms that drive BACE1 elevation are not well understood. One mechanism associated with brain injury is the activation of injurious p75 neurotrophin receptor (p75), which can trigger pathological signals. Here we report that within 72 h after controlled cortical impact (CCI) or laser injury, BACE1 and p75 are increased and tightly co-expressed in cortical neurons of mouse brain. Additionally, BACE1 is not up-regulated in p75 null mice in response to focal cortical injury, while p75 over-expression results in BACE1 augmentation in HEK-293 and SY5Y cell lines. A luciferase assay conducted in SY5Y cell line revealed that BACE1 expression is regulated at the transcriptional level in response to p75 transfection. Interestingly, this effect does not appear to be dependent upon p75 ligands including mature and pro-neurotrophins. In addition, BACE1 activity on amyloid precursor protein (APP) is enhanced in SY5Y-APP cells transfected with a p75 construct. Lastly, we found that the activation of c-jun n-terminal kinase (JNK) by p75 contributes to BACE1 up-regulation. This study explores how two injury-induced molecules are intimately connected and suggests a potential link between p75 signaling and the expression of BACE1 after brain injury.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/genética , Línea Celular Tumoral , Células Cultivadas , Corteza Cerebral/metabolismo , Células HEK293 , Humanos , MAP Quinasa Quinasa 4/metabolismo , Masculino , Ratones , Receptor de Factor de Crecimiento Nervioso/genética , Transducción de Señal , Regulación hacia Arriba
9.
Mol Psychiatry ; 23(8): 1813-1824, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29867188

RESUMEN

Tau pathology is characterized as a form of frontotemporal lobar degeneration (FTLD) known as FTLD-tau. The underlying pathogenic mechanisms are not known and no therapeutic interventions are currently available. Here, we report that the neurotrophin receptor p75NTR plays a critical role in the pathogenesis of FTLD-tau. The expression of p75NTR and the precursor of nerve growth factor (proNGF) were increased in the brains of FTLD-tau patients and mice (P301L transgenic). ProNGF-induced tau phosphorylation via p75NTR in vitro, which was associated with the AKT/glycogen synthase kinase (GSK)3ß pathway. Genetic reduction of p75NTR in P301L mice rescued the memory deficits, alleviated tau hyperphosphorylation and restored the activity of the AKT/GSK3ß pathway. Treatment of the P301L mice with the soluble p75NTR extracellular domain (p75ECD-Fc), which can antagonize neurotoxic ligands of p75NTR, effectively improved memory behavior and suppressed tau pathology. This suggests that p75NTR plays a crucial role in tau paGSKthology and represents a potential druggable target for FTLD-tau and related tauopathies.


Asunto(s)
Degeneración Lobar Frontotemporal/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Precursores de Proteínas/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Proteínas tau/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Femenino , Degeneración Lobar Frontotemporal/patología , Degeneración Lobar Frontotemporal/terapia , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Masculino , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Trastornos de la Memoria/terapia , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/patología , Fosforilación/fisiología , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
10.
J Neurochem ; 144(3): 302-317, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28869759

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive deposition of amyloid beta (Aß) and dysregulation of neurotrophic signaling, causing synaptic dysfunction, loss of memory, and cell death. The expression of p75 neurotrophin receptor is elevated in the brain of AD patients, suggesting its involvement in this disease. However, the exact mechanism of its action is not yet clear. Here, we show that p75 interacts with beta-site amyloid precursor protein cleaving enzyme-1 (BACE1), and this interaction is enhanced in the presence of Aß. Our results suggest that the colocalization of BACE1 and amyloid precursor protein (APP) is increased in the presence of both Aß and p75 in cortical neurons. In addition, the localization of APP and BACE1 in early endosomes is increased in the presence of Aß and p75. An increased phosphorylation of APP-Thr668 and BACE1-Ser498 by c-Jun N-terminal kinase (JNK) in the presence of Aß and p75 could be responsible for this localization. In conclusion, our study proposes a potential involvement in amyloidogenesis for p75, which may represent a future therapeutic target for AD. Cover Image for this Issue: doi. 10.1111/jnc.14163.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Corteza Cerebral/metabolismo , Endosomas/metabolismo , Neuronas/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones Noqueados , Cultivo Primario de Células , Receptores de Factor de Crecimiento Nervioso/genética , Transducción de Señal
11.
Mol Neurobiol ; 51(1): 1-7, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24733588

RESUMEN

Amyloid-beta (Aß) is suggested to play a causal role in the pathogenesis of Alzheimer's disease (AD). Immunotherapies are among the most promising Aß-targeting therapeutic strategies for AD. But, to date, all clinical trials of this modality have not been successful including Aß vaccination (AN1792), anti-Aß antibodies (bapineuzumab, solanezumab and ponezumab), and intravenous immunoglobulin (IVIG). We propose that one reason for the failures of these clinical trials may be the adverse effects of targeting the central clearance of amyloid plaques. The potential adverse effects include enhanced neurotoxicity related to Aß oligomerization from plaques, neuroinflammation related to opsonized Aß phagocytosis, autoimmunity related to cross-binding of antibodies to amyloid precursor protein (APP) on the neuron membrane, and antibody-mediated vascular and neuroskeletal damage. Overall, the majority of the adverse effects seen in clinical trials were associated with the entry of antibodies into the brain. Finally, we propose that peripheral Aß clearance would be effective and safe for future Aß-targeting therapies.


Asunto(s)
Enfermedad de Alzheimer/sangre , Péptidos beta-Amiloides/sangre , Encéfalo/patología , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/terapia , Encéfalo/metabolismo , Humanos , Inmunoterapia , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...