Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Med Imaging ; 43(4): 1422-1433, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38032773

RESUMEN

X-ray dark-field imaging enables a spatially-resolved visualization of ultra-small-angle X-ray scattering. Using phantom measurements, we demonstrate that a material's effective dark-field signal may be reduced by modification of the visibility spectrum by other dark-field-active objects in the beam. This is the dark-field equivalent of conventional beam-hardening, and is distinct from related, known effects, where the dark-field signal is modified by attenuation or phase shifts. We present a theoretical model for this group of effects and verify it by comparison to the measurements. These findings have significant implications for the interpretation of dark-field signal strength in polychromatic measurements.


Asunto(s)
Modelos Teóricos , Tomografía Computarizada por Rayos X , Rayos X , Tomografía Computarizada por Rayos X/métodos , Radiografía , Fantasmas de Imagen
2.
Eur Radiol ; 33(8): 5549-5556, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36806571

RESUMEN

OBJECTIVES: To compare the visibility of anatomical structures and overall quality of the attenuation images obtained with a dark-field X-ray radiography prototype with those from a commercial radiography system. METHODS: Each of the 65 patients recruited for this study obtained a thorax radiograph at the prototype and a reference radiograph at the commercial system. Five radiologists independently assessed the visibility of anatomical structures, the level of motion artifacts, and the overall image quality of all attenuation images on a five-point scale, with 5 points being the highest rating. The average scores were compared between the two image types. The differences were evaluated using an area under the curve (AUC) based z-test with a significance level of p ≤ 0.05. To assess the variability among the images, the distributions of the average scores per image were compared between the systems. RESULTS: The overall image quality was rated high for both devices, 4.2 for the prototype and 4.6 for the commercial system. The rating scores varied only slightly between both image types, especially for structures relevant to lung assessment, where the images from the commercial system were graded slightly higher. The differences were statistically significant for all criteria except for the bronchial structures, the cardiophrenic recess, and the carina. CONCLUSIONS: The attenuation images acquired with the prototype were assigned a high diagnostic quality despite a lower resolution and the presence of motion artifacts. Thus, the attenuation-based radiographs from the prototype can be used for diagnosis, eliminating the need for an additional conventional radiograph. KEY POINTS: • Despite a low tube voltage (70 kVp) and comparably long acquisition time, the attenuation images from the dark-field chest radiography system achieved diagnostic quality for lung assessment. • Commercial chest radiographs obtained a mean rating score regarding their diagnostic quality of 4.6 out of 5, and the grating-based images had a slightly lower mean rating score of 4.2 out of 5. • The difference in rating scores for anatomical structures relevant to lung assessment is below 5%.


Asunto(s)
Radiografía Torácica , Tórax , Humanos , Rayos X , Radiografía Torácica/métodos , Radiografía , Pulmón/diagnóstico por imagen
3.
Eur Radiol Exp ; 3(1): 25, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31292790

RESUMEN

BACKGROUND: Although x-ray dark-field imaging has been intensively investigated for lung imaging in different animal models, there is very limited data about imaging features in the human lungs. Therefore, in this work, a reader study on nine post-mortem human chest x-ray dark-field radiographs was performed to evaluate dark-field signal strength in the lungs, intraobserver and interobserver agreement, and image quality and to correlate with findings of conventional x-ray and CT. METHODS: In this prospective work, chest x-ray dark-field radiography with a tube voltage of 70 kVp was performed post-mortem on nine humans (3 females, 6 males, age range 52-88 years). Visual quantification of dark-field and transmission signals in the lungs was performed by three radiologists. Results were compared to findings on conventional x-rays and 256-slice computed tomography. Image quality was evaluated. For ordinal data, median, range, and dot plots with medians and 95% confidence intervals are presented; intraobserver and interobserver agreement were determined using weighted Cohen κ. RESULTS: Dark-field signal grading showed significant differences between upper and middle (p = 0.004-0.016, readers 1-3) as well as upper and lower zones (p = 0.004-0.016, readers 1-2). Median transmission grading was indifferent between all lung regions. Intraobserver and interobserver agreements were substantial to almost perfect for grading of both dark-field (κ = 0.793-0.971 and κ = 0.828-0.893) and transmission images (κ = 0.790-0.918 and κ = 0.700-0.772). Pulmonary infiltrates correlated with areas of reduced dark-field signal. Image quality was rated good for dark-field images. CONCLUSIONS: Chest x-ray dark-field images provide information of the lungs complementary to conventional x-ray and allow reliable visual quantification of dark-field signal strength.


Asunto(s)
Pulmón/diagnóstico por imagen , Radiografía Torácica/métodos , Tomografía Computarizada por Rayos X , Anciano , Anciano de 80 o más Años , Correlación de Datos , Diagnóstico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Radiografía
4.
PLoS One ; 14(6): e0217858, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31158251

RESUMEN

Lung tissue causes significant small-angle X-ray scattering, which can be visualized with grating-based X-ray dark-field imaging. Structural lung diseases alter alveolar microstructure, which often causes a dark-field signal decrease. The imaging method provides benefits for diagnosis of such diseases in small-animal models, and was successfully used on porcine and human lungs in a fringe-scanning setup. Micro- and macroscopic changes occur in the lung during breathing, but their individual effects on the dark-field signal are unknown. However, this information is important for quantitative medical evaluation of dark-field thorax radiographs. To estimate the effect of these changes on the dark-field signal during a clinical examination, we acquired in vivo dark-field chest radiographs of two pigs at three ventilation pressures. Pigs were used due to the high degree of similarity between porcine and human lungs. To analyze lung expansion separately, we acquired CT scans of both pigs at comparable posture and ventilation pressures. Segmentation, masking, and forward-projection of the CT datasets yielded maps of lung thickness and logarithmic lung attenuation signal in registration with the dark-field radiographs. Upon correlating this data, we discovered approximately linear relationships between the logarithmic dark-field signal and both projected quantities for all scans. Increasing ventilation pressure strongly decreased dark-field extinction coefficients, whereas the ratio of lung dark-field and attenuation signal changed only slightly. Furthermore, we investigated ratios of dark-field and attenuation noise levels at realistic signal levels via calculations and phantom measurements. Dark-field contrast-to-noise ratio (CNR) per lung height was 5 to 10% of the same quantity in attenuation. We conclude that better CNR performance in the dark-field modality is typically due to greater anatomical noise in the conventional radiograph. Given the high physiological similarity of human and porcine lungs, the presented thickness-normalized, ventilation-dependent values allow estimation of dark-field activity of human lungs of variable size and inspiration, which facilitates the design of suitable clinical imaging setups.


Asunto(s)
Medios de Contraste/química , Relación Señal-Ruido , Tórax/diagnóstico por imagen , Ventilación , Animales , Simulación por Computador , Procesamiento de Imagen Asistido por Computador , Modelos Lineales , Porcinos , Tomografía Computarizada por Rayos X
5.
PLoS One ; 13(9): e0204565, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30261038

RESUMEN

Disorders of the lungs such as chronic obstructive pulmonary disease (COPD) are a major cause of chronic morbidity and mortality and the third leading cause of death in the world. The absence of sensitive diagnostic tests for early disease stages of COPD results in under-diagnosis of this treatable disease in an estimated 60-85% of the patients. In recent years a grating-based approach to X-ray dark-field contrast imaging has shown to be very sensitive for the detection and quantification of pulmonary emphysema in small animal models. However, translation of this technique to imaging systems suitable for humans remains challenging and has not yet been reported. In this manuscript, we present the first X-ray dark-field images of in-situ human lungs in a deceased body, demonstrating the feasibility of X-ray dark-field chest radiography on a human scale. Results were correlated with findings of computed tomography imaging and autopsy. The performance of the experimental radiography setup allows acquisition of multi-contrast chest X-ray images within clinical boundary conditions, including radiation dose. Upcoming clinical studies will have to demonstrate that this technology has the potential to improve early diagnosis of COPD and pulmonary diseases in general.


Asunto(s)
Pulmón/diagnóstico por imagen , Radiografía Torácica/métodos , Autopsia , Cadáver , Diagnóstico Precoz , Estudios de Factibilidad , Femenino , Humanos , Interferometría/instrumentación , Interferometría/métodos , Enfermedades Pulmonares/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador , Radiografía Torácica/instrumentación , Radiografía Torácica/estadística & datos numéricos , Tomografía Computarizada por Rayos X
6.
Sci Rep ; 8(1): 2602, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29422512

RESUMEN

The aim of this study was to assess the diagnostic value of x-ray dark-field radiography to detect pneumothoraces in a pig model. Eight pigs were imaged with an experimental grating-based large-animal dark-field scanner before and after induction of a unilateral pneumothorax. Image contrast-to-noise ratios between lung tissue and the air-filled pleural cavity were quantified for transmission and dark-field radiograms. The projected area in the object plane of the inflated lung was measured in dark-field images to quantify the collapse of lung parenchyma due to a pneumothorax. Means and standard deviations for lung sizes and signal intensities from dark-field and transmission images were tested for statistical significance using Student's two-tailed t-test for paired samples. The contrast-to-noise ratio between the air-filled pleural space of lateral pneumothoraces and lung tissue was significantly higher in the dark-field (3.65 ± 0.9) than in the transmission images (1.13 ± 1.1; p = 0.002). In case of dorsally located pneumothoraces, a significant decrease (-20.5%; p > 0.0001) in the projected area of inflated lung parenchyma was found after a pneumothorax was induced. Therefore, the detection of pneumothoraces in x-ray dark-field radiography was facilitated compared to transmission imaging in a large animal model.


Asunto(s)
Pulmón/diagnóstico por imagen , Neumotórax/diagnóstico por imagen , Animales , Modelos Animales de Enfermedad , Radiografía/métodos , Porcinos , Rayos X
7.
Sci Rep ; 7(1): 4807, 2017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28684858

RESUMEN

X-ray chest radiography is an inexpensive and broadly available tool for initial assessment of the lung in clinical routine, but typically lacks diagnostic sensitivity for detection of pulmonary diseases in their early stages. Recent X-ray dark-field (XDF) imaging studies on mice have shown significant improvements in imaging-based lung diagnostics. Especially in the case of early diagnosis of chronic obstructive pulmonary disease (COPD), XDF imaging clearly outperforms conventional radiography. However, a translation of this technique towards the investigation of larger mammals and finally humans has not yet been achieved. In this letter, we present the first in-vivo XDF full-field chest radiographs (32 × 35 cm2) of a living pig, acquired with clinically compatible parameters (40 s scan time, approx. 80 µSv dose). For imaging, we developed a novel high-energy XDF system that overcomes the limitations of currently established setups. Our XDF radiographs yield sufficiently high image quality to enable radiographic evaluation of the lungs. We consider this a milestone in the bench-to-bedside translation of XDF imaging and expect XDF imaging to become an invaluable tool in clinical practice, both as a general chest X-ray modality and as a dedicated tool for high-risk patients affected by smoking, industrial work and indoor cooking.


Asunto(s)
Pulmón/diagnóstico por imagen , Radiografía Torácica/métodos , Tomografía Computarizada por Rayos X/métodos , Animales , Interpretación de Imagen Asistida por Computador/estadística & datos numéricos , Masculino , Radiografía Torácica/instrumentación , Porcinos , Tomografía Computarizada por Rayos X/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA