Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Sci Adv ; 5(10): eaax6535, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31681848

RESUMEN

Breaking waves produce bubble plumes that burst at the sea surface, injecting primary marine aerosol (PMA) highly enriched with marine organic carbon (OC) into the atmosphere. It is widely assumed that this OC is modern, produced by present-day biological activity, even though nearly all marine OC is thousands of years old, produced by biological activity long ago. We used natural abundance radiocarbon (14C) measurements to show that 19 to 40% of the OC associated with freshly produced PMA was refractory dissolved OC (RDOC). Globally, this process removes 2 to 20 Tg of RDOC from the oceans annually, comparable to other RDOC losses. This process represents a major removal pathway for old OC from the sea, with important implications for oceanic and atmospheric biogeochemistry, the global carbon cycle, and climate.

2.
Environ Sci Technol ; 53(16): 9407-9417, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31329419

RESUMEN

Surfactants account for minor fractions of total organic carbon in the ocean but can significantly influence the production of primary marine aerosol particles (PMA) at the sea surface via modulation of bubble surface tension. During September and October 2016, model PMA (mPMA) were produced from seawater by bursting bubbles at two biologically productive and two oligotrophic stations in the western North Atlantic Ocean. Total concentrations of surfactants extracted from mPMA and seawater were quantified and characterized via measurements of surface tension isotherms and critical micelle concentrations (CMCs). Surfactant CMCs in biologically productive seawater were lower than those in the oligotrophic seawater suggesting that surfactant mixtures in the two regions were chemically distinct. mPMA surfactants were enriched in all regions relative to those in the associated seawater. Surface tension isotherms indicate that mPMA surfactants were weaker than corresponding seawater surfactants. mPMA from biologically productive seawater contained higher concentrations of surfactants than those produced from oligotrophic seawater, supporting the hypothesis that seawater surfactant properties modulate mPMA surfactant concentrations. Diel variability in concentrations of seawater and mPMA surfactants in some regions is consistent with biological and/or photochemical processing. This work demonstrates direct links between surfactants in mPMA and those in the associated seawater.


Asunto(s)
Agua de Mar , Tensoactivos , Aerosoles , Océano Atlántico , Tensión Superficial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...