Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 33(18): 3896-3910.e7, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37673068

RESUMEN

Many species of animals use vision to regulate their social behaviors. However, the molecular and circuit mechanisms underlying visually guided social interactions remain largely unknown. Here, we show that the Drosophila ortholog of the human GABAA-receptor-associated protein (GABARAP) is required in a class of visual feedback neurons, lamina tangential (Lat) cells, to fine-tune male courtship. GABARAP is a ubiquitin-like protein that maintains cell-surface levels of GABAA receptors. We demonstrate that knocking down GABARAP or GABAAreceptors in Lat neurons or hyperactivating them induces male courtship toward other males. Inhibiting Lat neurons, on the other hand, delays copulation by impairing the ability of males to follow females. Remarkably, the fly GABARAP protein and its human ortholog share a strong sequence identity, and the fly GABARAP function in Lat neurons can be rescued by its human ortholog. Using in vivo two-photon imaging and optogenetics, we reveal that Lat neurons are functionally connected to neural circuits that mediate visually guided courtship pursuits in males. Our work identifies a novel physiological function for GABARAP in regulating visually guided courtship pursuits in Drosophila males. Reduced GABAA signaling has been linked to social deficits observed in the autism spectrum and bipolar disorders. The functional similarity between the human and the fly GABARAP raises the possibility of a conserved role for this gene in regulating social behaviors across insects and mammals.

2.
bioRxiv ; 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36747836

RESUMEN

Vision is critical for the regulation of mating behaviors in many species. Here, we discovered that the Drosophila ortholog of human GABA A -receptor-associated protein (GABARAP) is required to fine-tune male courtship by modulating the activity of visual feedback neurons, lamina tangential cells (Lat). GABARAP is a ubiquitin-like protein that regulates cell-surface levels of GABA A receptors. Knocking down GABARAP or GABA A receptors in Lat neurons or hyperactivating them induces male courtship toward other males. Inhibiting Lat neurons, on the other hand, delays copulation by impairing the ability of males to follow females. Remarkably, the human ortholog of Drosophila GABARAP restores function in Lat neurons. Using in vivo two-photon imaging and optogenetics, we show that Lat neurons are functionally connected to neural circuits that mediate visually-guided courtship pursuits in males. Our work reveals a novel physiological role for GABARAP in fine-tuning the activity of a visual circuit that tracks a mating partner during courtship.

3.
Sci Rep ; 6: 29481, 2016 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-27404960

RESUMEN

Detailed structural analyses of the mushroom body which plays critical roles in olfactory learning and memory revealed that it is directly connected with multiple primary sensory centers in Drosophila. Connectivity patterns between the mushroom body and primary sensory centers suggest that each mushroom body lobe processes information on different combinations of multiple sensory modalities. This finding provides a novel focus of research by Drosophila genetics for perception of the external world by integrating multisensory signals.


Asunto(s)
Drosophila melanogaster/fisiología , Aprendizaje/fisiología , Memoria/fisiología , Cuerpos Pedunculados/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Colorantes Fluorescentes , Microscopía Confocal , Vías Olfatorias/fisiología , Lóbulo Óptico de Animales no Mamíferos/fisiología , Percepción Visual/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA