Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Environ Toxicol Chem ; 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38131503

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a class of chemicals present in a wide range of commercial and consumer products due to their water-repellency, nonstick, or surfactant properties, resulting from their chemical and thermal stability. This stability, however, often leads to persistence in the environment when they are inevitability released. We utilized microbial microcosms from wastewater treatment plant (WWTP) sludge to determine how employing different functional groups such as heteroatom linkages, varying chain lengths, and hydrofluoroethers (HFEs) will impact the ultimate fate of these novel PFAS structures. A suite of five novel fluorosurfactant building blocks (F7 C3 OCHFCF2 SCH2 CH2 OH (FESOH), F3 COCHFCF2 SCH2 CH2 OH (MeFESOH), F7 C3 OCHFCF2 OCH2 CH2 OH (ProFdiEOH), F7 C3 OCHFCF2 CH2 OH (ProFEOH), and F3 COCHFCF2 OCH2 CH2 OH (MeFdiEOH)) and their select transformation products, were incubated in WWTP aerobic microcosms to determine structure-activity relationships. The HFE alcohol congeners with a thioether (FESOH and MeFESOH) were observed to transform faster than the ether congeners, while also producing second-generation HFE acid products (F7 C3 OCHFC(O)OH (2H-3:2 polyfluoroalkyl ether carboxylic acid [PFECA]) and F3 COCHFC(O)OH (2H-1:2 PFECA). Subsequent biodegradation experiments with 2H-1:2 PFESA and 2H-1:2 PFECA displayed no further transformation over 74 days. Surface water Photofate experiments compared 2H-1:2 PFECA, and 2H-1:2 polyfluorinated ether sulfonate (PFESA) with their fully fluorinated ether acid counterparts, and demonstrated the potential for both HFE acid species to completely mineralize over extended periods of time, a fate that highlights the value of studying novel PFAS functionalization. Environ Toxicol Chem 2024;00:1-9. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

2.
Environ Sci Technol ; 57(44): 17032-17041, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37877468

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) are present in a range of commercial and consumer products. These chemicals are often high-performance surfactants or nonstick/water-repellant coatings due to their chemical stability; however, this stability leads to select PFAS being environmentally persistent. To facilitate degradation, new fluorosurfactant building blocks (F7C3-O-CHF-CF2-S-CH2-CH2-OH (FESOH), F3C-O-CHF-CF2-S-CH2-CH2-OH (MeFESOH), F7C3-O-CHF-CF2-O-CH2-CH2-OH (ProFdiEOH), F7C3-O-CHF-CF2-CH2-OH (ProFEOH), and F3C-O-CHF-CF2-O-CH2-CH2-OH (MeFdiEOH)) have been systematically developed with heteroatom linkages such as ethers, thioethers, and polyfluorinated carbons. The room temperature, gas-phase OH oxidation rate constants, and products of these chemicals were monitored in an atmospheric chamber to investigate their fate in the atmosphere. Analysis was performed using online high-resolution chemical ionization mass spectrometry (CIMS) using the iodide reagent ion and via offline UPLC-MS/MS. FESOH and MeFESOH, the thioether congeners, were observed to have the largest rate constants of kFESOH = 2.82 (±0.33) and kMeFESOH = 2.17 (±0.17) (×10-12 cm3 molecules-1 s-1, respectively). First-, second-, and third-generation products of OH oxidation were observed as a function of time, while product quantification yielded ultrashort perfluoropropionic acid (PFPrA) and short polyfluoroether acid species as the terminal products for FESOH and ProFdiEOH. There was evidence for MeFESOH being fully mineralized, demonstrating the potential benign chemical architecture.


Asunto(s)
Fluorocarburos , Espectrometría de Masas en Tándem , Cromatografía Liquida , Atmósfera/química
3.
Environ Sci Technol ; 57(32): 11704-11717, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37515552

RESUMEN

Photoinitiators (PIs) are a family of anthropogenic chemicals used in polymerization systems that generate active substances to initiate polymerization reactions under certain radiations. Although polymerization is considered a green method, its wide application in various commercial products, such as UV-curable inks, paints, and varnishes, has led to ubiquitous environmental issues caused by PIs. In this study, we present an overview of the current knowledge on the environmental occurrence, human exposure, and toxicity of PIs and provide suggestions for future research based on numerous available studies. The residual concentrations of PIs in commercial products, such as food packaging materials, are at microgram per gram levels. The migration of PIs from food packaging materials to foodstuffs has been confirmed by more than 100 reports of food contamination caused by PIs. Furthermore, more than 20 PIs have been detected in water, sediment, sewage sludge, and indoor dust collected from Asia, the United States, and Europe. Human internal exposure was also confirmed by the detection of PIs in serum. In addition, PIs were present in human breast milk, indicating that breastfeeding is an exposure pathway for infants. Among the most available studies, benzophenone is the dominant congener detected in the environment and humans. Toxicity studies of PIs reveal multiple toxic end points, such as carcinogenicity and endocrine-disrupting effects. Future investigations should focus on synergistic/antagonistic toxicity effects caused by PIs coexposure and metabolism/transformation pathways of newly identified PIs. Furthermore, future research should aim to develop "greener" PIs with high efficiency, low migration, and low toxicity.


Asunto(s)
Polvo , Embalaje de Alimentos , Femenino , Humanos , Asia , Benzofenonas/química , Agua
4.
Environ Sci Process Impacts ; 25(5): 980-995, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37128709

RESUMEN

A simple equilibrium passive sampler, consisting of water in an inert container capped with a rate-limiting barrier, for the monitoring of per- and polyfluoroalkyl substances (PFAS) in sediment pore water and surface water was developed and tested through a series of laboratory and field experiments. The objectives of the laboratory experiments were to determine (1) the membrane type that could serve as the sampler's rate-limiting barrier, (2) the mass transfer coefficient of environmentally relevant PFAS through the selected membrane, and (3) the performance reference compounds (PRCs) that could be used to infer the kinetics of PFAS diffusing into the sampler. Of the membranes tested, the polycarbonate (PC) membrane was deemed the most suitable rate-limiting barrier, given that it did not appreciably adsorb the studied PFAS (which have ≤8 carbons), and that the migration of these compounds through this membrane could be described by Fick's law of diffusion. When employed as the PRC, the isotopically labelled PFAS M2PFOA and M4PFOS were able to predict the mass transfer coefficients of the studied PFAS analytes. In contrast, the mass transfer coefficients were underpredicted by Br- and M3PFPeA. For validation, the PC-based passive samplers consisting of these four PRCs, as well as two other PRCs (i.e., M8PFOA and C8H17SO3-), were deployed in the sediment and water at a PFAS-impacted field site. The concentration-time profiles of the PRCs indicated that the samplers deployed in the sediment required at least 6 to 7 weeks to reach 90% equilibrium. If the deployment times are shorter (e.g., 2 to 4 weeks), PFAS concentrations at equilibrium could be estimated based on the concentrations of the PRCs remaining in the sampler at retrieval. All PFAS concentrations determined via this approach were within a factor of two compared to those measured in the mechanically extracted sediment pore water and surface water samples obtained adjacent to the sampler deployment locations. Neither biofouling of the rate-limiting barrier nor any physical change to it was observed on the sampler after retrieval. The passive sampler developed in this study could be a promising tool for the monitoring of PFAS in pore water and surface water.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Agua , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Difusión
6.
Anal Chem ; 94(7): 3278-3286, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35148065

RESUMEN

Per- and polyfluorinated alkyl substances (PFAS) are ubiquitous throughout the environment. Analysis of PFAS is commonly performed using both targeted and nontargeted mass spectrometry methods. However, it has been demonstrated that measurements of fluorinated compounds in the environment by mass spectrometry often fall short of the total fluorine concentration. In the present study, we employ a 19F NMR technique, which is capable of detailing fluorinated compounds in a sample while providing both quantitative and structural information. Inclusion of a noise-reduction strategy involving the acquisition of arrays of spectra with an increasing number of transients addresses the sensitivity challenges of environmental nuclear magnetic resonance (NMR), improving signal to noise. When this technique is applied to environmental and biological samples including rainwater, lake water, wastewater effluent, serum, and urine, the presence of PFAS, which may have been missed by routine mass spectrometric methods, is revealed. Important resonances in the 19F NMR spectrum such as that of trifluoroacetic acid are brought above the limit of quantification in all samples, allowing detection limits as low as 389 pg/L in rainwater. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, which was used to analyze 47 PFAS compounds, accounts for only 3.7-27% of the total fluorine concentration as determined by the NMR strategy in the present study.


Asunto(s)
Flúor , Fluorocarburos , Cromatografía Liquida , Fluorocarburos/análisis , Espectroscopía de Resonancia Magnética , Espectrometría de Masas en Tándem/métodos
7.
Environ Sci Technol ; 56(2): 907-916, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34978445

RESUMEN

The microbial transformation potential of 6:2 chlorinated polyfluorooctane ether sulfonate (6:2 Cl-PFESA) was explored in anaerobic microbial systems. Microbial communities from anaerobic wastewater sludge, an anaerobic digester, and anaerobic dechlorinating cultures enriched from aquifer materials reductively dechlorinated 6:2 Cl-PFESA to 6:2 hydrogen-substituted polyfluorooctane ether sulfonate (6:2 H-PFESA), which was identified as the sole metabolite by non-target analysis. Rapid and complete reductive dechlorination of 6:2 Cl-PFESA was achieved by the anaerobic dechlorinating cultures. The microbial community of the anaerobic dechlorinating cultures was impacted by 6:2 Cl-PFESA exposure. Organohalide-respiring bacteria originally present in the anaerobic dechlorinating cultures, including Geobacter, Dehalobacter, and Dehalococcoides, decreased in relative abundance over time. As the relative abundance of organohalide-respiring bacteria decreased, the rates of 6:2 Cl-PFESA dechlorination decreased, suggesting that the most likely mechanism for reductive dechlorination of 6:2 Cl-PFESA was co-metabolism rather than organohalide respiration. Reductive defluorination of 6:2 Cl-PFESA was not observed. Furthermore, 6:2 H-PFESA exhibited 5.5 times lower sorption affinity to the suspended biosolids than 6:2 Cl-PFESA, with the prospect of increased mobility in the environment. These results show the susceptibility of 6:2 Cl-PFESA to microbially mediated reductive dechlorination and the likely persistence of the product, 6:2 H-PFESA, in anaerobic environments.


Asunto(s)
Chloroflexi , Anaerobiosis , Biodegradación Ambiental , Chloroflexi/metabolismo , Éter/metabolismo , Éteres/metabolismo
8.
Environ Sci Technol ; 56(10): 6123-6132, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33947185

RESUMEN

6:2 chlorinated polyfluorooctane ether sulfonate (6:2 Cl-PFESA) was previously shown to undergo limited dechlorination in rainbow trout to yield 6:2 hydrogen-substituted polyfluorooctane ether sulfonate (6:2 H-PFESA) as the sole metabolite. However, the biotransformation susceptibility of 6:2 Cl-PFESA has not been investigated in mammals and the biological behavior of 6:2 H-PFESA has not been defined in any species. We investigated the respective transformation products of 6:2 Cl-PFESA and 6:2 H-PFESA and their toxicokinetic properties in male Sprague-Dawley rats as a mammalian model. 6:2 H-PFESA was the sole detectable metabolite of 6:2 Cl-PFESA, with a transformation percentage of 13.6% in rat liver, but it resisted further degradation. 6:2 Cl-PFESA also transformed to 6:2 H-PFESA in reductive rat liver S9 incubations but remained stable under oxidative conditions, suggesting a reductive enzyme-dependent transformation pathway. 6:2 Cl-PFESA was more enriched in lipid-rich tissues, while 6:2 H-PFESA was more prone to cumulative urinary excretion. From this perspective, it may suggest a detoxification mechanism for organisms to form the less hydrophobic 6:2 H-PFESA to alleviate total burdens. To date, 6:2 Cl-PFESA was the second perfluoroalkyl acid reported to undergo biotransformation in mammals. The toxicokinetic properties determined for 6:2 Cl-PFESA and 6:2 H-PFESA in blood and urine were found to be structure and dose dependent.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Alcanosulfonatos , Animales , Éter , Éteres/metabolismo , Fluorocarburos/toxicidad , Hidrógeno , Masculino , Mamíferos/metabolismo , Ratas , Ratas Sprague-Dawley , Toxicocinética
9.
Environ Sci Technol ; 56(10): 6027-6035, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33886306

RESUMEN

Many per- and polyfluoroalkyl substances (PFAS) have been regulated or phased-out of usage due to concerns about persistence, bioaccumulation potential, and toxicity. We investigated the atmospheric fate of a new polyfluorinated alcohol 2-(1,1,2-trifluoro-2-heptafluoropropyloxy-ethylsulfanyl)-ethanol (C3F7OCHFCF2SCH2CH2OH, abbreviated FESOH) by assessing the kinetics and products of the gas-phase reaction of FESOH with chlorine atoms and hydroxyl radicals. Experiments performed in a stainless-steel chamber interfaced to an FTIR were used to determine reaction kinetics and gas-phase products. We report reaction rate constants of k(Cl + FESOH) = (1.5 ± 0.6) × 10-11 cm3 molecule-1 s-1 and k(OH + FESOH) = (4.2 ± 2.0) × 10-12 cm3 molecule-1 s-1. This leads to a calculated FESOH gas-phase lifetime of 2.8 ± 1.3 days with respect to reaction with OH, assuming [OH] = 106 molecule1 cm-3. Gas-phase products of FESOH oxidation included at least two aldehydes, likely C3F7OCHFCF2SCH2C(O)H and C3F7OCHFCF2SC(O)H, and secondary products including COF2, SO2 and C3F7OC(O)F. Additional gas-phase experiments performed in a Teflon chamber were used to assess aqueous products by collecting gaseous samples offline into an aqueous sink prior to analysis with ultrahigh performance liquid chromatography-tandem mass spectrometry, resulting in four acidic products: C3F7OCHFCF2SCH2C(O)OH, C3F7OCHFCF2S(O)(O)OH, C3F7OCHFC(O)OH, and perfluoropropanoic acid (C2F5C(O)OH).


Asunto(s)
Cloro , Radical Hidroxilo , Cloro/química , Gases , Radical Hidroxilo/química , Cinética , Oxidación-Reducción
10.
Environ Sci Process Impacts ; 24(1): 62-71, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-34935819

RESUMEN

A replacement fluorosurfactant has been recently introduced to the European market as an alternative to other per- and polyfluoroalkyl substances (PFAS) that have been phased-out or banned. Here, we incubated this novel fluorosurfactant (diFESOS, [F7C3OCHFCF2SCH2CH2OC(O)]2C2H3SO3-) which contains ether and thioether insertions, and its known polyfluoroalkyl degradation products, an alcohol (FESOH) and carboxylic acid (FESCA), with activated sludge from a wastewater treatment plant under sulfur-limited conditions. Dosed chemicals and their transformation products were monitored using ultra-high performance liquid chromatography-tandem mass spectrometry, and gas chromatography-mass spectrometry. In addition to FESOH and FESCA, two smaller metabolites were identified: C3F7OCHFCOO- (2H-3:2 PFECA) and perfluoropropanoic acid (PFPrA). 2H-3:2 PFECA presumably was a result of S-dealkylation of FESCA, which then resulted in the abiotic cleavage of two C-F bonds; no S-oxygenation was observed. Overall, the terminal products of this biotransformation likely have lower bioaccumulation potential than the parent fluorosurfactant based on comparison to other similar PFAS.


Asunto(s)
Fluorocarburos , Purificación del Agua , Biotransformación , Aguas del Alcantarillado , Tensoactivos
11.
Environ Toxicol Chem ; 40(12): 3328-3336, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34748651

RESUMEN

Per- and polyfluoroalkyl substances are a class of fluorochemicals that can degrade into perfluoroalkyl acids, which are well known to be persistent in the environment. It is thus important that novel fluorinated surfactants be designed to degrade into small, nonbioaccumulative products. We report the biotransformation and elimination kinetics of one such novel polyfluorinated surfactant, di(polyfluoroether thioether(S)-oate) sulfonate (diFESOS), and its metabolites. Biotransformation was investigated in vitro using S9 liver fractions and in vivo in Sprague-Dawley rats. Rats dosed by oral gavage with diFESOS were found to have relatively fast elimination kinetics, with half-lives on the order of hours, compared with legacy fluorinated surfactants such as the disubstituted polyfluoroalkyl phosphates that have half-lives on the order of days. To interrogate degradation of the polyfluorinated chain, rats were then dosed with a polyfluoroether thioether alcohol (a suspected product of carboxylate cleavage of diFESOS) either orally or intravenously, and the novel metabolite 2H-3:2 polyfluoroether sulfonic acid (2H-3:2 PFESA) was identified. Perfluoropropionic acid was detected in rat urine and is likely a terminal product. The blood of orally dosed rats contained higher levels of metabolites than the blood of intravenously dosed rats, suggesting the importance of metabolism in the gut and liver. Elimination kinetics of all the novel metabolites were faster than their fully fluorinated counterparts. Environ Toxicol Chem 2021;40:3328-3336. © 2021 SETAC.


Asunto(s)
Fluorocarburos , Tensoactivos , Animales , Biotransformación , Ácidos Carboxílicos , Fluorocarburos/metabolismo , Fosfatos , Ratas , Ratas Sprague-Dawley
12.
Environ Sci Technol ; 55(20): 14051-14058, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34618444

RESUMEN

3-(3,5-Di-tert-butyl-4-hydroxyphenyl)propionate antioxidants, a family of synthetic phenolic antioxidants (SPAs) widely used in polymers, have recently been identified in indoor and outdoor environments. However, limited information is available concerning human exposure to these novel contaminants. In the present study, seven 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate antioxidants were analyzed in human urine samples of donors from the United States. None of the target SPAs were initially detected in the urine samples either before or after hydrolysis by ß-glucuronidase, prompting us to probe the major metabolites of these SPAs. We conducted rat metabolism studies with two representative congeners, tetrakis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate) (AO1010) and N,N'-bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionyl]hydrazine (AO1024). Neither AO1010 nor AO1024 was detected in rat urine, while 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid (fenozan acid) was identified as a urinary biomarker for these 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate antioxidants. Surprisingly, fenozan acid was detected in 88% of the human urine samples before hydrolysis (geometric mean: 0.69 ng/mL) and 98% of the samples after hydrolysis (geometric mean: 10.2 ng/mL), indicating prevalent human exposure to 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate antioxidants. To our knowledge, this is the first study reporting the occurrence of fenozan acid in urine, where it can act as a potential biomarker of human exposure to 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate antioxidants.


Asunto(s)
Antioxidantes , Hidroxitolueno Butilado , Animales , Biomarcadores , Butanos , Humanos , Propionatos , Ratas
13.
Environ Toxicol Chem ; 40(8): 2156-2164, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34003530

RESUMEN

The environmental fate and persistence of sulfoxaflor is of significant interest given the potential for the insecticide to impact nontarget organisms, particularly pollinating and aquatic species. In the present study we examine the potential for sulfoxaflor, a new sulfoximine insecticide, to undergo degradation and transformation in sediments and the aquatic environment. Following application of the active substance as a foliar spray or seed coating, sulfoxaflor can be found in the soil at a mass percentage of up to 61% of the total applied concentration. The low soil sorption coefficient (KD ) of sulfoxaflor of 0.103 signifies the potential for sulfoxaflor to undergo transport into nearby surface waters via groundwater run-off. In soils and sediments sulfoxaflor produces a sulfoxaflor-urea analog with a varying half-life of 5.0 to 8.5 d depending on the sediment type. Once in surface waters, sulfoxaflor can undergo photolysis to a sulfoxaflor alcohol derivative with a half-life of 35 h. The photodegradate demonstrates reduced aquatic toxicity to Daphnia magna, but the photolytic half-life may be too long to mitigate the acute toxicity of the parent substance sulfoxaflor to D. magna, which was found to have a 48-h median effect concentration of 361 µg/L. Environ Toxicol Chem 2021;40:2156-2164. © 2021 SETAC.


Asunto(s)
Insecticidas , Contaminantes Químicos del Agua , Animales , Daphnia , Insecticidas/toxicidad , Piridinas , Suelo , Compuestos de Azufre/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
14.
Environ Int ; 149: 106412, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33548846

RESUMEN

Although synthetic antioxidants (AOs) and photoinitiators (PIs) are known to be used in printing inks, there are little data on residual concentrations in printing paper products. In the present study, twenty-five PIs, ten AOs, and six transformation products were analyzed in two types of printing paper products, magazines and paperboard food packaging materials, both of which are unavoidable everyday products in our life. Nine AOs and six transformation products can be detected in food packaging materials with total concentrations (geometric mean, GM) of 1.16 × 104 ng/dm2. Twenty-two PIs were detected in food packaging materials with total concentrations (GM) of 1.76 × 104 ng/dm2. These chemicals were also detected in magazines, albeit at low concentrations (GM of AOs: 466 ng/dm2, GM of PIs: 1.17 × 103 ng/dm2). Magazine front covers were found to have much higher concentrations of the target compounds than magazine inside pages. Tris(2,4-di-tert-butylphenyl) phosphate (AO168O), 2,6-di-tert-butyl-4-methylphenol (BHT), bisphenol A (BPA), and benzophenone (BP) were among the predominant chemicals in those printing paper products. Preliminary calculations suggest that dermal exposure to AOs (GM: 6.25 ng/day) and PIs (GM: 17.0 ng/day) via contact with printing paper products is a minor exposure pathway compared to food intake/dust ingestion and is exceedingly unlikely to cause adverse health effects.


Asunto(s)
Antioxidantes , Tinta , Hidroxitolueno Butilado , Polvo , Humanos , Impresión Tridimensional
15.
Environ Sci Technol ; 54(19): 11706-11719, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32915564

RESUMEN

Synthetic phenolic antioxidants (SPAs) are widely used in various industrial and commercial products to retard oxidative reactions and lengthen product shelf life. In recent years, numerous studies have been conducted on the environmental occurrence, human exposure, and toxicity of SPAs. Here, we summarize the current understanding of these issues and provide recommendations for future research directions. SPAs have been detected in various environmental matrices including indoor dust, outdoor air particulates, sea sediment, and river water. Recent studies have also observed the occurrence of SPAs, such as 2,6-di-tert-butyl-4-methylphenol (BHT) and 2,4-di-tert-butyl-phenol (DBP), in humans (fat tissues, serum, urine, breast milk, and fingernails). In addition to these parent compounds, some transformation products have also been detected both in the environment and in humans. Human exposure pathways include food intake, dust ingestion, and use of personal care products. For breastfeeding infants, breast milk may be an important exposure pathway. Toxicity studies suggest some SPAs may cause hepatic toxicity, have endocrine disrupting effects, or even be carcinogenic. The toxicity effects of some transformation products are likely worse than those of the parent compound. For example, 2,6-di-tert-butyl-p-benzoquinone (BHT-Q) can cause DNA damage at low concentrations. Future studies should investigate the contamination and environmental behaviors of novel high molecular weight SPAs, toxicity effects of coexposure to several SPAs, and toxicity effects on infants. Future studies should also develop novel SPAs with low toxicity and low migration ability, decreasing the potential for environmental pollution.


Asunto(s)
Antioxidantes , Fenoles , Antioxidantes/análisis , Hidroxitolueno Butilado/análisis , Polvo , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Humanos , Oxidación-Reducción , Fenoles/análisis , Fenoles/toxicidad
16.
Environ Toxicol Chem ; 39(10): 1918-1928, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32678964

RESUMEN

Saflufenacil when applied to a field is susceptible to transport, degradation, and transformation. We used a laboratory-based approach to model the fate of saflufenacil in the environment, the results of which are compared directly with those observed in a field study where saflufenacil was applied to a crop of winter wheat at a standard rate of 63 g of active ingredient/hectare. The water solubility of 2.1 g/L for saflufenacil allows for vertical transport through soil at a rate of 4.3 cm/mL of rainwater, and a soil adsorption coefficient KOC of 28.8 suggests that some of the herbicide will absorb to the soil. Of the saflufenacil in the soil, 78 ± 2.1% (n = 18) partitioned into plants, including nontargeted crop species, where it was found primarily in leaves (78 ± 2.1%, n = 18) and roots (22 ± 1.7%, n = 18). The saflufenacil that does not partition into plants or undergo vertical transport followed a degradation pathway into 3 metabolites: a uracil-ring N-demethylated metabolite (Saf-µCH3 ), a doubly N-demethylated metabolite (Saf-2CH3 ), and a ring-cleavage metabolite (Saf-RC), identified using nontargeted mass spectrometry. In the field, saflufenacil was observed to degrade over 212 d to the persistent metabolite Saf-RC. This metabolite was found at a concentration that was 1/10th of that applied to the field, suggesting that the majority of saflufenacil had undergone transport through the soil, or uptake into the winter wheat crop. Field samples were further examined using F-19 nuclear magnetic resonance and nontargeted mass spectrometry to rule out the potential of other degradation products. Environ Toxicol Chem 2020;39:1918-1928. © 2020 SETAC.


Asunto(s)
Herbicidas/análisis , Protoporfirinógeno-Oxidasa/antagonistas & inhibidores , Pirimidinonas/análisis , Contaminantes del Suelo/análisis , Suelo/química , Sulfonamidas/análisis , Triticum/crecimiento & desarrollo , Bioacumulación , Biodegradación Ambiental , Canadá , Fotólisis , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Tallos de la Planta/química , Tallos de la Planta/metabolismo , Triticum/metabolismo
17.
Environ Sci Technol ; 54(1): 345-354, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31774655

RESUMEN

This study provides the first in vivo pharmacokinetic data for chlorinated perfluorooctanesulfonate (Cl-PFOS), 6:2 and 8:2 chlorinated polyfluoroalkyl ether sulfonates (Cl-PFESAs), upon a 30 day dietary exposure and 34 day depuration phase in rainbow trout (Oncorhynchus mykiss). Biological handling of these three novel molecules and legacy PFOS were investigated via cross-comparison. PFOS and Cl-PFOS displayed comparable bioaccumulative potencies and similar distribution tendencies in tissues (blood > liver > kidneys), despite the presence of a terminal chlorine atom in Cl-PFOS molecule. The Cl-PFESAs, especially 8:2 Cl-PFESA, were predominantly assimilated from the bloodstream by liver and kidneys and resisted elimination, leading to higher bioaccumulation factors in liver than in blood (0.576 and 0.254, respectively, for 8:2 Cl-PFESA) and longer half-lives in liver and kidneys than PFOS, suggesting these alternatives may pose greater risks in terms of the great accumulation potentials in fish tissues. The present study provides the first report of the in vivo transformation of 6:2 and 8:2 Cl-PFESAs and identifies 6:2 and 8:2 H-PFESAs as their respective sole metabolites. This provides the first line of evidence suggesting that the transformation susceptibility of Cl-PFESAs in organisms is distinct from their environmental persistence.


Asunto(s)
Fluorocarburos , Oncorhynchus mykiss , Alcanosulfonatos , Animales , Biotransformación , Éter , Éteres
18.
Environ Sci Technol ; 53(22): 13440-13448, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31609587

RESUMEN

Although synthetic phenolic antioxidants (SPAs) are widely used in various personal care products (PCPs), little is known about their levels, composition profiles, human exposure, or environmental emissions. In this study, the occurrence of SPAs was evaluated in 15 categories of 214 PCPs collected in Toronto, Canada. Nine SPAs were detected in the PCPs, of which only 2,6-di-tert-butyl-4-methylphenol (BHT, < method quantification limit (MQL)-827 900 ng/g, mean: 35 602 ng/g, median: 249 ng/g) was observed with a detection frequency of >50%. When the 214 PCPs were separated into products labeled as containing BHT and those labeled as not containing BHT, the BHT-labeled PCPs (mean: 369 253 ng//g, median: 382 560 ng/g) contained significantly higher concentrations of BHT than the BHT-unlabeled PCPs (mean: 4960 ng/g, median: 199 ng/g) did (p < 0.01). Five transformation products (TPs) of BHT were also detected in the PCPs at low concentrations (∑TPs: < MQL to 19 014 ng/g, mean: 730 ng/g, median: < MQL) and detection frequencies (12.6-37.4%). Preliminary calculations found that dermal absorption via PCP use may be an important exposure pathway for BHT (mean: 565 879 ng/day median: 2988 ng/day), although this is a negligible exposure pathway for other SPAs. In addition, the estimated discharges of BHT (mean: 7852 g/day, median: 88 g/day) via greywater after PCP use were calculated, which represents a nonignorable source of BHT loading into wastewater treatment plants in Toronto (contributing 10%). To our knowledge, this is the first evaluation of human exposure to and discharge of SPAs via PCP use.


Asunto(s)
Antioxidantes , Fenoles , Hidroxitolueno Butilado , Canadá , Humanos , Aguas Residuales
19.
Environ Pollut ; 252(Pt B): 1423-1428, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31265952

RESUMEN

Synthetic phenolic antioxidants (SPAs) have received increasing attention due to the reports of toxicity and environmental contamination. Nevertheless, limited information was available on human burdens of these SPAs, with the exception of 2,6-di-tert-butyl-4-methylphenol (BHT). In our study, BHT as well as six other SPAs were analyzed in human urine samples from United States donors. Three SPA congeners were detected in human urine: BHT, 2,4-di-tert-butylphenol (DBP), and 3-tert-butyl-4-hydroxyanisole (BHA). BHT, which is the congener received most concerns, was detected at low concentrations [geometric mean (GM): 0.06 ng/mL], whereas four of its metabolites were detected at relatively high concentrations (GM: 1.68 ng/mL). Surprisingly, DBP was detected at extremely high concentrations (GM: 18.3 ng/mL). The concentrations of DBP (GM: 25.8 ng/mL), BHT (0.853 ng/mL), and metabolites (GM: 10.5 ng/mL) increased significantly after the urine samples were hydrolyzed by ß-glucuronidase (p < 0.01), indicating the prevalence of the conjugated forms of SPAs and their metabolites in human urine. DBP, which has previously received little attention, was the predominant congener, contributing 88.2% and 63.6% to total target concentrations in the urine samples before and after ß-glucuronidase hydrolysis, respectively. Thus, previous studies have vastly underestimated the burdens of SPAs to humans. To our knowledge, this is the first study revealing the presence of DBP in human urine.


Asunto(s)
Antioxidantes/análisis , Hidroxianisol Butilado/análisis , Hidroxitolueno Butilado/análisis , Fenoles/orina , Adolescente , Adulto , Anciano , Femenino , Glucuronidasa/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Urinálisis , Adulto Joven
20.
Sci Total Environ ; 672: 23-29, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30954820

RESUMEN

Synthetic phenolic antioxidants (SPAs) are a class of anthropogenic antioxidants that are widely used in a large variety of commercial products. Although several SPAs have been listed as targets for risk assessment by Environment and Climate Change Canada, little data are available on the occurrence of SPAs in the Canadian environment. In this study, eighty-three indoor dust samples were collected from offices and homes in Toronto. Eight SPAs were detected at concentrations ranging from 67.2 to 1.55e4 ng/g, with a geometric mean (GM) concentration of 1.49e3 ng/g, among which 2,6-di-tert-butyl-4-methylphenol (BHT) was the primary congener and had a GM concentration of 658 ng/g. Four BHT transformation products (TPs) were also detected in the indoor dust samples, with concentrations ranging from 40.4 to 1.27e4 ng/g and a GM concentration of 883 ng/g. No significant concentration difference was observed between the office and home dust samples for either the summed target SPA or TP concentrations (p > 0.05). The calculated estimated daily intakes of these chemical contaminants (0.004-10.0 ng/kg BW/day) suggest that they pose no immediate health risk to the Canadian population. To the best of our knowledge, this is the first report of the occurrence of these chemical contaminants and their transformation products in Canadian indoor environments, and furthermore the first detection of 4-tert-butyl-phenol in an environmental sample.


Asunto(s)
Contaminación del Aire Interior/análisis , Antioxidantes/química , Polvo/análisis , Contaminantes Ambientales/química , Fenoles/química , Hidroxitolueno Butilado/química , Canadá , Humanos , Modelos Químicos , Aguas del Alcantarillado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...