Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Diabetes ; 71(9): 2058-2063, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35713886

RESUMEN

Net synthesis of pancreatic ß-cells peaks before 2 years of life. ß-Cell mass is set within the first 5 years of life. In-frame translational readthrough of the NRP1 gene exon 9 into intron 9 generates a truncated neuropilin-1 protein lacking downstream sequence necessary for binding VEGF that stimulates ß-cell replication. VEGF is critical for developing but not adult islet neogenesis. Herein we show that cells in human pancreatic islets containing the full-length neuropilin-1 possess insulin but cells that contain the truncated neuropilin-1 are devoid of insulin. Decreased insulin cells increases susceptibility to onset of type 1 diabetes at a younger age. We also show that the frequency of a genetic marker in NRP1 intron 9 is higher among patients with onset of type 1 diabetes before age 4 years (31.8%), including those with onset at 0.67-2.00 and 2-4 years, compared with that in patients with onset at 4-8 years, at 8-12 years, and after 16 years (16.1%) with frequency equal to that in subjects without diabetes (16.0%). Decreased insulin cells plus the genetic data are consistent with a low effect mechanism that alters the onset of type 1 diabetes to a very young age in some patients, thus supporting the endotype concept that type 1 diabetes is a heterogeneous disease.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Edad de Inicio , Preescolar , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Insulina/metabolismo , Intrones/genética , Islotes Pancreáticos/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Isoformas de Proteínas/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
2.
Nature ; 593(7859): 351-361, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34012079

RESUMEN

High-energy-density physics is the field of physics concerned with studying matter at extremely high temperatures and densities. Such conditions produce highly nonlinear plasmas, in which several phenomena that can normally be treated independently of one another become strongly coupled. The study of these plasmas is important for our understanding of astrophysics, nuclear fusion and fundamental physics-however, the nonlinearities and strong couplings present in these extreme physical systems makes them very difficult to understand theoretically or to optimize experimentally. Here we argue that machine learning models and data-driven methods are in the process of reshaping our exploration of these extreme systems that have hitherto proved far too nonlinear for human researchers. From a fundamental perspective, our understanding can be improved by the way in which machine learning models can rapidly discover complex interactions in large datasets. From a practical point of view, the newest generation of extreme physics facilities can perform experiments multiple times a second (as opposed to approximately daily), thus moving away from human-based control towards automatic control based on real-time interpretation of diagnostic data and updates of the physics model. To make the most of these emerging opportunities, we suggest proposals for the community in terms of research design, training, best practice and support for synthetic diagnostics and data analysis.

3.
Diabetes ; 70(7): 1575-1580, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33849997

RESUMEN

Mitochondrial glycerol phosphate dehydrogenase (mGPD) is the rate-limiting enzyme of the glycerol phosphate redox shuttle. It was recently claimed that metformin, a first-line drug used for the treatment of type 2 diabetes, inhibits liver mGPD 30-50%, suppressing gluconeogenesis through a redox mechanism. Various factors cast doubt on this idea. Total-body knockout of mGPD in mice has adverse effects in several tissues where the mGPD level is high but has little or no effect in liver, where the mGPD level is the lowest of 10 tissues. Metformin has beneficial effects in humans in tissues with high levels of mGPD, such as pancreatic ß-cells, where the mGPD level is much higher than that in liver. Insulin secretion in mGPD knockout mouse ß-cells is normal because, like liver, ß-cells possess the malate aspartate redox shuttle whose redox action is redundant to the glycerol phosphate shuttle. For these and other reasons, we used four different enzyme assays to reassess whether metformin inhibited mGPD. Metformin did not inhibit mGPD in homogenates or mitochondria from insulin cells or liver cells. If metformin actually inhibited mGPD, adverse effects in tissues where the level of mGPD is much higher than that in the liver could prevent the use of metformin as a diabetes medicine.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Metformina/farmacología , Mitocondrias/enzimología , Animales , Gluconeogénesis/efectos de los fármacos , Humanos , Masculino , Metformina/uso terapéutico , Ratones , Ratones Endogámicos BALB C , NAD/metabolismo , Oxidación-Reducción , Fenformina/farmacología , Ratas
4.
Ecol Lett ; 24(3): 594-607, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33368953

RESUMEN

Positive interactions are sensitive to human activities, necessitating synthetic approaches to elucidate broad patterns and predict future changes if these interactions are altered or lost. General understanding of freshwater positive interactions has been far outpaced by knowledge of these important relationships in terrestrial and marine ecosystems. We conducted a global meta-analysis to evaluate the magnitude of positive interactions across freshwater habitats. In 340 studies, we found substantial positive effects, with facilitators increasing beneficiaries by, on average, 81% across all taxa and response variables. Mollusks in particular were commonly studied as both facilitators and beneficiaries. Amphibians were one group benefiting the most from positive interactions, yet few studies investigated amphibians. Invasive facilitators had stronger positive effects on beneficiaries than non-invasive facilitators. We compared positive effects between high- and low-stress conditions and found no difference in the magnitude of benefit in the subset of studies that manipulated stressors. Future areas of research include understudied facilitators and beneficiaries, the stress gradient hypothesis, patterns across space or time and the influence of declining taxa whose elimination would jeopardise fragile positive interaction networks. Freshwater positive interactions occur among a wide range of taxa, influence populations, communities and ecosystem processes and deserve further exploration.


Asunto(s)
Ecosistema , Especies Introducidas , Agua Dulce , Actividades Humanas , Humanos
5.
Ecol Evol ; 10(17): 9026-9036, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32953043

RESUMEN

Given unprecedented rates of biodiversity loss, there is an urgency to better understand the ecological consequences of interactions among organisms that may lost or altered. Positive interactions among organisms of the same or different species that directly or indirectly improve performance of at least one participant can structure populations and communities and control ecosystem process. However, we are still in need of synthetic approaches to better understand how positive interactions scale spatio-temporally across a range of taxa and ecosystems. Here, we synthesize two complementary approaches to more rigorously describe positive interactions and their consequences among organisms, across taxa, and over spatio-temporal scales. In the first approach, which we call the mechanistic approach, we make a distinction between two principal mechanisms of facilitation-habitat modification and resource modification. Considering the differences in these two mechanisms is critical because it delineates the potential spatio-temporal bounds over which a positive interaction can occur. We offer guidance on improved sampling regimes for quantification of these mechanistic interactions and their consequences. Second, we present a trait-based approach in which traits of facilitators or traits of beneficiaries can modulate their magnitude of effect or how they respond to either of the positive interaction mechanisms, respectively. Therefore, both approaches can be integrated together by quantifying the degree to which a focal facilitator's or beneficiary's traits explain the magnitude of a positive effect in space and time. Furthermore, we demonstrate how field measurements and analytical techniques can be used to collect and analyze data to test the predictions presented herein. We conclude by discussing how these approaches can be applied to contemporary challenges in ecology, such as conservation and restoration and suggest avenues for future research.

6.
Nature ; 584(7819): 51-54, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32760045

RESUMEN

White dwarfs represent the final state of evolution for most stars1-3. Certain classes of white dwarfs pulsate4,5, leading to observable brightness variations, and analysis of these variations with theoretical stellar models probes their internal structure. Modelling of these pulsating stars provides stringent tests of white dwarf models and a detailed picture of the outcome of the late stages of stellar evolution6. However, the high-energy-density states that exist in white dwarfs are extremely difficult to reach and to measure in the laboratory, so theoretical predictions are largely untested at these conditions. Here we report measurements of the relationship between pressure and density along the principal shock Hugoniot (equations describing the state of the sample material before and after the passage of the shock derived from conservation laws) of hydrocarbon to within five per cent. The observed maximum compressibility is consistent with theoretical models that include detailed electronic structure. This is relevant for the equation of state of matter at pressures ranging from 100 million to 450 million atmospheres, where the understanding of white dwarf physics is sensitive to the equation of state and where models differ considerably. The measurements test these equation-of-state relations that are used in the modelling of white dwarfs and inertial confinement fusion experiments7,8, and we predict an increase in compressibility due to ionization of the inner-core orbitals of carbon. We also find that a detailed treatment of the electronic structure and the electron degeneracy pressure is required to capture the measured shape of the pressure-density evolution for hydrocarbon before peak compression. Our results illuminate the equation of state of the white dwarf envelope (the region surrounding the stellar core that contains partially ionized and partially degenerate non-ideal plasmas), which is a weak link in the constitutive physics informing the structure and evolution of white dwarf stars9.

7.
Arch Biochem Biophys ; 676: 108124, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31585072

RESUMEN

Pyruvate carboxylase (PC) is an anaplerotic enzyme that supplies oxaloacetate to mitochondria enabling the maintenance of other metabolic intermediates consumed by cataplerosis. Using liquid chromatography mass spectrometry (LC-MS) to measure metabolic intermediates derived from uniformly labeled 13C6-glucose or [3-13C]l-lactate, we investigated the contribution of PC to anaplerosis and cataplerosis in the liver cell line HepG2. Suppression of PC expression by short hairpin RNA lowered incorporation of 13C glucose incorporation into tricarboxylic acid cycle intermediates, aspartate, glutamate and sugar derivatives, indicating impaired cataplerosis. The perturbation of these biosynthetic pathways is accompanied by a marked decrease of cell viability and proliferation. In contrast, under gluconeogenic conditions where the HepG2 cells use lactate as a carbon source, pyruvate carboxylation contributed very little to the maintenance of these metabolites. Suppression of PC did not affect the percent incorporation of 13C-labeled carbon from lactate into citrate, α-ketoglutarate, malate, succinate as well as aspartate and glutamate, suggesting that under gluconeogenic condition, PC does not support cataplerosis from lactate.


Asunto(s)
Ácidos Carboxílicos/metabolismo , Gluconeogénesis , Ácido Pirúvico/metabolismo , Proliferación Celular , Ciclo del Ácido Cítrico , Regulación Enzimológica de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Glucosa/metabolismo , Células Hep G2 , Humanos , Lactatos/metabolismo , Piruvato Carboxilasa/genética
8.
PLoS One ; 13(3): e0194252, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29566023

RESUMEN

Fructose-1,6-bisphosphatase (FBP1) plays an essential role in gluconeogenesis. Here we report that the human FBP1 gene is regulated by two liver-enriched transcription factors, CCAAT-enhancer binding protein-α (C/EBPα) and hepatocyte nuclear factor 4α (HNF4α) in human hepatoma HepG2 cells. C/EBPα regulates transcription of FBP1 gene via binding to the two overlapping C/EBPα sites located at nucleotide -228/-208 while HNF4α regulates FBP1 gene through binding to the classical H4-SBM site and direct repeat 3 (DR3) located at nucleotides -566/-554 and -212/-198, respectively. Mutations of these transcription factor binding sites result in marked decrease of C/EBPα- or HNF4α-mediated transcription activation of FBP1 promoter-luciferase reporter expression. Electrophoretic mobility shift assays of -228/-208 C/EBPα or -566/-554 and -212/-198 HNF4α sites with nuclear extract of HepG2 cells overexpressing C/EBPα or HNF4α confirms binding of these two transcription factors to these sites. Finally, we showed that siRNA-mediated suppression of C/EBPα or HNF4α expression in HepG2 cells lowers expression of FBP1 in parallel with down-regulation of expression of other gluconeogenic enzymes. Our results suggest that an overall gluconeogenic program is regulated by these two transcription factors, enabling transcription to occur in a liver-specific manner.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Carcinoma Hepatocelular/genética , Regulación Neoplásica de la Expresión Génica , Factor Nuclear 4 del Hepatocito/metabolismo , Neoplasias Hepáticas/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Carcinoma Hepatocelular/patología , Núcleo Celular/genética , Núcleo Celular/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Ensayo de Cambio de Movilidad Electroforética , Células Hep G2 , Factor Nuclear 4 del Hepatocito/genética , Humanos , Hígado/patología , Neoplasias Hepáticas/patología , Mutagénesis Sitio-Dirigida , Regiones Promotoras Genéticas/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN , Regulación hacia Arriba
9.
Arch Biochem Biophys ; 618: 32-43, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28193492

RESUMEN

Long-chain acyl-CoA synthetases (ACSLs) convert fatty acids to fatty acyl-CoAs to regulate various physiologic processes. We characterized the ACSL isoforms in a cell line of homogeneous rat beta cells (INS-1 832/13 cells) and human pancreatic islets. ACSL4 and ACSL3 proteins were present in the beta cells and human and rat pancreatic islets and concentrated in insulin secretory granules and less in mitochondria and negligible in other intracellular organelles. ACSL1 and ACSL6 proteins were not seen in INS-1 832/13 cells or pancreatic islets. ACSL5 protein was seen only in INS-1 832/13 cells. With shRNA-mediated gene silencing we developed stable ACSL knockdown cell lines from INS-1 832/13 cells. Glucose-stimulated insulin release was inhibited ∼50% with ACSL4 and ACSL3 knockdown and unaffected in cell lines with knockdown of ACSL5, ACLS6 and ACSL1. Lentivirus shRNA-mediated gene silencing of ACSL4 and ACSL3 in human pancreatic islets inhibited glucose-stimulated insulin release. ACSL4 and ACSL3 knockdown cells showed inhibition of ACSL enzyme activity more with arachidonate than with palmitate as a substrate, consistent with their preference for unsaturated fatty acids as substrates. ACSL4 knockdown changed the patterns of fatty acids in phosphatidylserines and phosphatidylethanolamines. The results show the involvement of ACLS4 and ACLS3 in insulin secretion.


Asunto(s)
Coenzima A Ligasas/metabolismo , Células Secretoras de Insulina/enzimología , Insulina/metabolismo , Islotes Pancreáticos/citología , Animales , Ácido Araquidónico/química , Coenzima A Ligasas/genética , Silenciador del Gen , Glucosa/química , Humanos , Secreción de Insulina , Ácido Palmítico/química , Fosfatidiletanolaminas/química , Fosfatidilserinas/química , Isoformas de Proteínas , Ratas
10.
Biochim Biophys Acta Mol Basis Dis ; 1863(2): 537-551, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27890529

RESUMEN

We recently showed that the anaplerotic enzyme pyruvate carboxylase (PC) is up-regulated in human breast cancer tissue and its expression is correlated with the late stages of breast cancer and tumor size [Phannasil et al., PloS One 10, e0129848, 2015]. In the current study we showed that PC enzyme activity is much higher in the highly invasive breast cancer cell line MDA-MB-231 than in less invasive breast cancer cell lines. We generated multiple stable PC knockdown cell lines from the MDA-MB-231 cell line and used mass spectrometry with 13C6-glucose and 13C5-glutamine to discern the pathways that use PC in support of cell growth. Cells with severe PC knockdown showed a marked reduction in viability and proliferation rates suggesting the perturbation of pathways that are involved in cancer invasiveness. Strong PC suppression lowered glucose incorporation into downstream metabolites of oxaloacetate, the product of the PC reaction, including malate, citrate and aspartate. Levels of pyruvate, lactate, the redox partner of pyruvate, and acetyl-CoA were also lower suggesting the impairment of mitochondrial pyruvate cycles. Serine, glycine and 5-carbon sugar levels and flux of glucose into fatty acids were decreased. ATP, ADP and NAD(H) levels were unchanged indicating that PC suppression did not significantly affect mitochondrial energy production. The data indicate that the major metabolic roles of PC in invasive breast cancer are primarily anaplerosis, pyruvate cycling and mitochondrial biosynthesis of precursors of cellular components required for breast cancer cell growth and replication.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proliferación Celular , Redes y Vías Metabólicas , Invasividad Neoplásica/patología , Piruvato Carboxilasa/metabolismo , Acetilcoenzima A/metabolismo , Ácido Aspártico/metabolismo , Vías Biosintéticas , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Ácido Cítrico/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Glicina/metabolismo , Glucólisis , Humanos , Ácido Láctico/metabolismo , Malatos/metabolismo , Espectrometría de Masas , Invasividad Neoplásica/genética , Nucleótidos/metabolismo , Piruvato Carboxilasa/genética , Ácido Pirúvico/metabolismo , Serina/metabolismo
11.
Mol Metab ; 5(10): 980-987, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27689010

RESUMEN

OBJECTIVE: Glucose-stimulated insulin secretion in pancreatic beta cells requires metabolic signals including the generation of glucose-derived short chain acyl-CoAs in the cytosol from mitochondrially-derived metabolites. One concept of insulin secretion is that ATP citrate lyase generates short chain acyl-CoAs in the cytosol from mitochondrially-derived citrate. Of these, malonyl-CoA, is believed to be an important signal in insulin secretion. Malonyl-CoA is also a precursor for lipids. Our recent evidence suggested that, in the mitochondria of beta cells, glucose-derived pyruvate can be metabolized to acetoacetate that is exported to the cytosol and metabolized to the same short chain acyl-CoAs and fatty acids that can be derived from citrate. We tested for redundancy of the citrate pathway. METHODS: We inhibited ATP citrate lyase activity using hydroxycitrate as well as studying a stable cell line generated with shRNA knockdown of ATP citrate lyase in the pancreatic beta cell line INS-1 832/13. RESULTS: In both instances glucose-stimulated insulin release was not inhibited. Mass spectrometry analysis showed that the flux of carbon from [U-(13)C]glucose and/or [U-(13)C]α-ketoisocaproic acid (KIC) into short chain acyl-CoAs in cells with hydroxycitrate-inhibited ATP citrate lyase or in the cell line with stable severe (>90%) shRNA knockdown of ATP citrate lyase was similar to the controls. Both (13)C-glucose and (13)C-KIC introduced substantial (13)C labeling into acetyl-CoA, malonyl-CoA, and HMG-CoA under both conditions. Glucose flux into fatty acids was not affected by ATP citrate lyase knockdown. CONCLUSION: The results establish the involvement of the acetoacetate pathway in insulin secretion in pancreatic beta cells.

12.
Diabetes ; 65(7): 2051-9, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27207549

RESUMEN

A mechanistic cause for Mauriac syndrome, a syndrome of growth failure and delayed puberty associated with massive liver enlargement from glycogen deposition in children with poorly controlled type 1 diabetes, is unknown. We discovered a mutation in the catalytic subunit of liver glycogen phosphorylase kinase in a patient with Mauriac syndrome whose liver extended into his pelvis. Glycogen phosphorylase kinase activates glycogen phosphorylase, the enzyme that catalyzes the first step in glycogen breakdown. We show that the mutant subunit acts in a dominant manner to completely inhibit glycogen phosphorylase kinase enzyme activity and that this interferes with glycogenolysis causing increased levels of glycogen in human liver cells. It is known that even normal blood glucose levels physiologically inhibit glycogen phosphorylase to diminish glucose release from the liver when glycogenolysis is not needed. The patient's mother possessed the same mutant glycogen phosphorylase kinase subunit, but did not have diabetes or hepatomegaly. His father had childhood type 1 diabetes in poor glycemic control, but lacked the mutation and had neither hepatomegaly nor growth failure. This case proves that the effect of a mutant enzyme of glycogen metabolism can combine with hyperglycemia to directly hyperinhibit glycogen phosphorylase, in turn blocking glycogenolysis causing the massive liver in Mauriac disease.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Glucógeno Fosforilasa de Forma Hepática/metabolismo , Glucógeno/metabolismo , Trastornos del Crecimiento/genética , Hepatomegalia/genética , Fosforilasa Quinasa/genética , Pubertad Tardía/genética , Adolescente , Diabetes Mellitus Tipo 1/metabolismo , Trastornos del Crecimiento/metabolismo , Hepatomegalia/metabolismo , Humanos , Masculino , Mutación , Fosforilasa Quinasa/metabolismo , Pubertad Tardía/metabolismo , Síndrome
13.
J Biol Chem ; 290(38): 23110-23, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26240149

RESUMEN

The negative charge of phosphatidylserine in lipid bilayers of secretory vesicles and plasma membranes couples the domains of positively charged amino acids of secretory vesicle SNARE proteins with similar domains of plasma membrane SNARE proteins enhancing fusion of the two membranes to promote exocytosis of the vesicle contents of secretory cells. Our recent study of insulin secretory granules (ISG) (MacDonald, M. J., Ade, L., Ntambi, J. M., Ansari, I. H., and Stoker, S. W. (2015) Characterization of phospholipids in insulin secretory granules in pancreatic beta cells and their changes with glucose stimulation. J. Biol. Chem. 290, 11075-11092) suggested that phosphatidylserine and other phospholipids, such as phosphatidylethanolamine, in ISG could play important roles in docking and fusion of ISG to the plasma membrane in the pancreatic beta cell during insulin exocytosis. P4 ATPase flippases translocate primarily phosphatidylserine and, to a lesser extent, phosphatidylethanolamine across the lipid bilayers of intracellular vesicles and plasma membranes to the cytosolic leaflets of these membranes. CDC50A is a protein that forms a heterodimer with P4 ATPases to enhance their translocase catalytic activity. We found that the predominant P4 ATPases in pure pancreatic beta cells and human and rat pancreatic islets were ATP8B1, ATP8B2, and ATP9A. ATP8B1 and CDC50A were highly concentrated in ISG. ATP9A was concentrated in plasma membrane. Gene silencing of individual P4 ATPases and CDC50A inhibited glucose-stimulated insulin release in pure beta cells and in human pancreatic islets. This is the first characterization of P4 ATPases in beta cells. The results support roles for P4 ATPases in translocating phosphatidylserine to the cytosolic leaflets of ISG and the plasma membrane to facilitate the docking and fusion of ISG to the plasma membrane during insulin exocytosis.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Membrana Celular/enzimología , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Adenosina Trifosfatasas/genética , Animales , Línea Celular , Membrana Celular/genética , Silenciador del Gen , Humanos , Insulina/genética , Secreción de Insulina , Células Secretoras de Insulina/citología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfatidilserinas/genética , Fosfatidilserinas/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Ratas
14.
PLoS One ; 10(6): e0129848, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26070193

RESUMEN

Pyruvate carboxylase (PC) is an anaplerotic enzyme that catalyzes the carboxylation of pyruvate to oxaloacetate, which is crucial for replenishing tricarboxylic acid cycle intermediates when they are used for biosynthetic purposes. We examined the expression of PC by immunohistochemistry of paraffin-embedded breast tissue sections of 57 breast cancer patients with different stages of cancer progression. PC was expressed in the cancerous areas of breast tissue at higher levels than in the non-cancerous areas. We also found statistical association between the levels of PC expression and tumor size and tumor stage (P < 0.05). The involvement of PC with these two parameters was further studied in four breast cancer cell lines with different metastatic potentials; i.e., MCF-7, SKBR3 (low metastasis), MDA-MB-435 (moderate metastasis) and MDA-MB-231 (high metastasis). The abundance of both PC mRNA and protein in MDA-MB-231 and MDA-MB-435 cells was 2-3-fold higher than that in MCF-7 and SKBR3 cells. siRNA-mediated knockdown of PC expression in MDA-MB-231 and MDA-MB-435 cells resulted in a 50% reduction of cell proliferation, migration and in vitro invasion ability, under both glutamine-dependent and glutamine-depleted conditions. Overexpression of PC in MCF-7 cells resulted in a 2-fold increase in their proliferation rate, migration and invasion abilities. Taken together the above results suggest that anaplerosis via PC is important for breast cancer cells to support their growth and motility.


Asunto(s)
Neoplasias de la Mama/metabolismo , Movimiento Celular , Proliferación Celular , Piruvato Carboxilasa/metabolismo , Regulación hacia Arriba , Neoplasias de la Mama/patología , Femenino , Humanos , Células MCF-7 , Invasividad Neoplásica , Piruvato Carboxilasa/genética
15.
J Biol Chem ; 290(17): 11075-92, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25762724

RESUMEN

The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria. The concentrations of negatively charged phospholipids, phosphatidylserine, and phosphatidylinositol in ISG were 5-fold higher than in the whole cell. In ISG phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin, fatty acids 12:0 and 14:0 were high, as were phosphatidylserine and phosphatidylinositol containing 18-carbon unsaturated FA. With glucose stimulation, the concentration of many ISG phosphatidylserines and phosphatidylinositols increased; unsaturated fatty acids in phosphatidylserine increased; and most phosphatidylethanolamines, phosphatidylcholines, sphingomyelins, and lysophosphatidylcholines were unchanged. Unsaturation and shorter fatty acid length in phospholipids facilitate curvature and fluidity of membranes, which favors fusion of membranes. Recent evidence suggests that negatively charged phospholipids, such as phosphatidylserine, act as coupling factors enhancing the interaction of positively charged regions in SNARE proteins in synaptic or secretory vesicle membrane lipid bilayers with positively charged regions in SNARE proteins in the plasma membrane lipid bilayer to facilitate docking of vesicles to the plasma membrane during exocytosis. The results indicate that ISG phospholipids are in a dynamic state and are consistent with the idea that changes in ISG phospholipids facilitate fusion of ISG with the plasma membrane-enhancing glucose-stimulated insulin exocytosis.


Asunto(s)
Glucosa/farmacología , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Mitocondrias/metabolismo , Fosfolípidos/metabolismo , Vesículas Secretoras/metabolismo , Edulcorantes/farmacología , Animales , Línea Celular , Exocitosis/efectos de los fármacos , Secreción de Insulina , Células Secretoras de Insulina/citología , Ratones
16.
Mol Endocrinol ; 29(3): 396-410, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25594249

RESUMEN

Pancreatic ß-cells with severely knocked down cytosolic malic enzyme (ME1) and mitochondrial NAD(P) malic enzyme (ME2) show normal insulin secretion. The mitochondrial NADP malic enzyme (ME3) is very low in pancreatic ß-cells, and ME3 was previously thought unimportant for insulin secretion. Using short hairpin RNAs that targeted one or more malic enzyme mRNAs in the same cell, we generated more than 25 stable INS-1 832/13-derived insulin cell lines expressing extremely low levels of ME1, ME2, and ME3 alone or low levels of two of these enzymes in the same cell line. We also used double targeting of the same Me gene to achieve even more severe reduction in Me1 and Me2 mRNAs and enzyme activities than we reported previously. Knockdown of ME3, but not ME1 or ME2 alone or together, inhibited insulin release stimulated by glucose, pyruvate or 2-aminobicyclo [2,2,1]heptane-2-carboxylic acid-plus-glutamine. The data suggest that ME3, far more than ME1 or ME2, is necessary for insulin release. Because ME3 enzyme activity is low in ß-cells, its role in insulin secretion may involve a function other than its ME catalytic activity.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Malato Deshidrogenasa/metabolismo , Mitocondrias/enzimología , Animales , Secuencia de Bases , Línea Celular Tumoral , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Glucosa/farmacología , Glutamina/farmacología , Immunoblotting , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Leucina/farmacología , Malato Deshidrogenasa/genética , Mitocondrias/efectos de los fármacos , Ácido Pirúvico/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas
17.
PLoS One ; 9(7): e102730, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25054881

RESUMEN

Pyruvate carboxylase (PC) is an anaplerotic enzyme that regulates glucose-induced insulin secretion in pancreatic islets. Dysregulation of its expression is associated with type 2 diabetes. Herein we describe the molecular mechanism underlying the glucose-mediated transcriptional regulation of the PC gene. Incubation of the rat insulin cell line INS-1 832/13 with glucose resulted in a 2-fold increase in PC mRNA expression. Transient transfections of the rat PC promoter-luciferase reporter construct in the above cell line combined with mutational analysis indicated that the rat PC gene promoter contains the glucose-responsive element (GRE), comprising three canonical E-boxes (E1, E3 and E4) and one E-box-like element (E2) clustering between nucleotides -546 and -399, upstream of the transcription start site. Mutation of any of these E-boxes resulted in a marked reduction of glucose-mediated transcriptional induction of the reporter gene. Electrophoretic mobility shift assays revealed that the upstream stimulatory factors 1 and 2 (USF1 and USF2) bind to E1, the Specificity Protein-1 (Sp1) binds to E2, USF2 and the carbohydrate responsive element binding protein (ChREBP) binds to E4, while unknown factors binds to E3. High glucose promotes the recruitment of Sp1 to E2 and, USF2 and ChREBP to E4. Silencing the expression of Sp1, USF2 and ChREBP by their respective siRNAs in INS-1 832/13 cells blunted glucose-induced expression of endogenous PC. We conclude that the glucose-mediated transcriptional activation of the rat PC gene is regulated by at least these three transcription factors.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucosa/farmacología , Regiones Promotoras Genéticas/genética , Piruvato Carboxilasa/genética , Elementos de Respuesta/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Sitios de Unión/genética , Western Blotting , Línea Celular Tumoral , Insulinoma/genética , Insulinoma/metabolismo , Insulinoma/patología , Mutación , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Unión Proteica , Interferencia de ARN , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores Estimuladores hacia 5'/genética , Factores Estimuladores hacia 5'/metabolismo
18.
Nature ; 510(7506): 542-6, 2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24847880

RESUMEN

Metformin is considered to be one of the most effective therapeutics for treating type 2 diabetes because it specifically reduces hepatic gluconeogenesis without increasing insulin secretion, inducing weight gain or posing a risk of hypoglycaemia. For over half a century, this agent has been prescribed to patients with type 2 diabetes worldwide, yet the underlying mechanism by which metformin inhibits hepatic gluconeogenesis remains unknown. Here we show that metformin non-competitively inhibits the redox shuttle enzyme mitochondrial glycerophosphate dehydrogenase, resulting in an altered hepatocellular redox state, reduced conversion of lactate and glycerol to glucose, and decreased hepatic gluconeogenesis. Acute and chronic low-dose metformin treatment effectively reduced endogenous glucose production, while increasing cytosolic redox and decreasing mitochondrial redox states. Antisense oligonucleotide knockdown of hepatic mitochondrial glycerophosphate dehydrogenase in rats resulted in a phenotype akin to chronic metformin treatment, and abrogated metformin-mediated increases in cytosolic redox state, decreases in plasma glucose concentrations, and inhibition of endogenous glucose production. These findings were replicated in whole-body mitochondrial glycerophosphate dehydrogenase knockout mice. These results have significant implications for understanding the mechanism of metformin's blood glucose lowering effects and provide a new therapeutic target for type 2 diabetes.


Asunto(s)
Gluconeogénesis/efectos de los fármacos , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Metformina/farmacología , Mitocondrias/enzimología , Animales , Glucemia/análisis , Glucemia/biosíntesis , Células Cultivadas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/enzimología , Diabetes Mellitus Tipo 2/metabolismo , Glicerolfosfato Deshidrogenasa/deficiencia , Glicerolfosfato Deshidrogenasa/genética , Glicerolfosfato Deshidrogenasa/metabolismo , Humanos , Hipoglucemiantes/farmacología , Insulina/metabolismo , Secreción de Insulina , Ácido Láctico/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Noqueados , Oxidación-Reducción/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
19.
Biochim Biophys Acta ; 1830(11): 5104-11, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23876293

RESUMEN

BACKGROUND: There are three isocitrate dehydrogenases (IDHs) in the pancreatic insulin cell; IDH1 (cytosolic) and IDH2 (mitochondrial) use NADP(H). IDH3 is mitochondrial, uses NAD(H) and was believed to be the IDH that supports the citric acid cycle. METHODS: With shRNAs targeting mRNAs for these enzymes we generated cell lines from INS-1 832/13 cells with severe (80%-90%) knockdown of the mitochondrial IDHs separately and together in the same cell line. RESULTS: With knockdown of both mitochondrial IDH's mRNA, enzyme activity and protein level, (but not with knockdown of only one mitochondrial IDH) glucose- and BCH (an allosteric activator of glutamate dehydrogenase)-plus-glutamine-stimulated insulin release were inhibited. Cellular levels of citrate, α-ketoglutarate, malate and ATP were altered in patterns consistent with blockage at the mitochondrial IDH reactions. We were able to generate only 50% knockdown of Idh1 mRNA in multiple cell lines (without inhibition of insulin release) possibly because greater knockdown of IDH1 was not compatible with cell line survival. CONCLUSIONS: The mitochondrial IDHs are redundant for insulin secretion. When both enzymes are severely knocked down, their low activities (possibly assisted by transport of IDH products and other metabolic intermediates from the cytosol into mitochondria) are sufficient for cell growth, but inadequate for insulin secretion when the requirement for intermediates is certainly more rapid. The results also indicate that IDH2 can support the citric acid cycle. GENERAL SIGNIFICANCE: As almost all mammalian cells possess substantial amounts of all three IDH enzymes, the biological principles suggested by these results are probably extrapolatable to many tissues.


Asunto(s)
Células Secretoras de Insulina/enzimología , Insulina/metabolismo , Isocitrato Deshidrogenasa/deficiencia , Isocitrato Deshidrogenasa/genética , Mitocondrias/enzimología , Adenosina Trifosfato/metabolismo , Animales , Línea Celular , Ácido Cítrico/metabolismo , Ciclo del Ácido Cítrico/fisiología , Citosol/enzimología , Citosol/metabolismo , Técnicas de Silenciamiento del Gen , Glucosa/metabolismo , Glutamato Deshidrogenasa/metabolismo , Glutamina/metabolismo , Células Secretoras de Insulina/metabolismo , Isocitrato Deshidrogenasa/metabolismo , Ácidos Cetoglutáricos/metabolismo , Malatos/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , ARN Mensajero/genética , Ratas
20.
PLoS One ; 8(1): e55139, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23383084

RESUMEN

Pyruvate carboxylase (PC) is an enzyme that plays a crucial role in many biosynthetic pathways in various tissues including glucose-stimulated insulin secretion. In the present study, we identify promoter usage of the human PC gene in pancreatic beta cells. The data show that in the human, two alternative promoters, proximal and distal, are responsible for the production of multiple mRNA isoforms as in the rat and mouse. RT-PCR analysis performed with cDNA prepared from human liver and islets showed that the distal promoter, but not the proximal promoter, of the human PC gene is active in pancreatic beta cells. A 1108 bp fragment of the human PC distal promoter was cloned and analyzed. It contains no TATA box but possesses two CCAAT boxes, and other putative transcription factor binding sites, similar to those of the distal promoter of rat PC gene. To localize the positive regulatory region in the human PC distal promoter, 5'-truncated and the 25-bp and 15-bp internal deletion mutants of the human PC distal promoter were generated and used in transient transfections in INS-1 832/13 insulinoma and HEK293T (kidney) cell lines. The results indicated that positions -340 to -315 of the human PC distal promoter serve as (an) activator element(s) for cell-specific transcription factor, while the CCAAT box at -71/-67, a binding site for nuclear factor Y (NF-Y), as well as a GC box at -54/-39 of the human PC distal promoter act as activator sequences for basal transcription.


Asunto(s)
Células Secretoras de Insulina/enzimología , Regiones Promotoras Genéticas , Piruvato Carboxilasa/genética , Animales , Secuencia de Bases , Clonación Molecular , Células HEK293 , Humanos , Ratones , Datos de Secuencia Molecular , Especificidad de Órganos , Ratas , Alineación de Secuencia , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...