Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Clin Med Phys ; 25(4): e14247, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38131514

RESUMEN

BACKGROUND: Beam modifying accessories for proton therapy often need to be placed in close proximity of the patient for optimal dosimetry. However, proton treatment units are larger in size and as a result the planned treatment geometry may not be achievable due to collisions with the patient. A framework that can accurately simulate proton treatment geometry is desired. PURPOSE: A quantitative framework was developed to model patient-specific proton treatment geometry, minimize air gap, and avoid collisions. METHODS: The patient's external contour is converted into the International Electrotechnique Commission (IEC) gantry coordinates following the patient's orientation and each beam's gantry and table angles. All snout components are modeled by three-dimensional (3D) geometric shapes such as columns, cuboids, and frustums. Beam-specific parameters such as isocenter coordinates, snout type and extension are used to determine if any point on the external contour protrudes into the various snout components. A 3D graphical user interface is also provided to the planner to visualize the treatment geometry. In case of a collision, the framework's analytic algorithm quantifies the maximum protrusion of the external contour into the snout components. Without a collision, the framework quantifies the minimum distance of the external contour from the snout components and renders a warning if such distance is less than 5 cm. RESULTS: Three different snout designs are modeled. Examples of potential collision and its aversion by snout retraction are demonstrated. Different patient orientations, including a sitting treatment position, as well as treatment plans with multiple isocenters, are successfully modeled in the framework. Finally, the dosimetric advantage of reduced air gap enabled by this framework is demonstrated by comparing plans with standard and reduced air gaps. CONCLUSION: Implementation of this framework reduces incidence of collisions in the treatment room. In addition, it enables the planners to minimize the air gap and achieve better plan dosimetry.


Asunto(s)
Terapia de Protones , Humanos , Protones , Algoritmos , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica
3.
J Neurooncol ; 162(2): 353-362, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36951945

RESUMEN

PURPOSE: Atypical teratoid/rhabdoid tumors (ATRT) of the central nervous system (CNS) are rare tumors with a poor prognosis and variable use of either focal or craniospinal (CSI) radiotherapy (RT). Outcomes on the prospective Pediatric Proton/Photon Consortium Registry (PPCR) were evaluated according to RT delivered. METHODS: Pediatric patients receiving RT were prospectively enrolled on PPCR to collect initial patient, disease, and treatment factors as well as provide follow-up for patient outcomes. All ATRT patients with evaluable data were included. Kaplan-Meier analyses with log-rank p-values and cox proportional hazards regression were performed. RESULTS: The PPCR ATRT cohort includes 68 evaluable ATRT patients (median age 2.6 years, range 0.71-15.40) from 2012 to 2021. Median follow-up was 40.8 months (range 3.4-107.7). Treatment included surgery (65% initial gross total resection or GTR), chemotherapy (60% with myeloablative therapy including stem cell rescue) and RT. For patients with M0 stage (n = 60), 50 (83%) had focal RT and 10 (17%) had CSI. Among patients with M + stage (n = 8), 3 had focal RT and 5 had CSI. Four-year overall survival (OS, n = 68) was 56% with no differences observed between M0 and M + stage patients (p = 0.848). Local Control (LC) at 4 years did not show a difference for lower primary dose (50-53.9 Gy) compared to ≥ 54 Gy (73.3% vs 74.7%, p = 0.83). For patients with M0 disease, four-year OS for focal RT was 54.6% and for CSI was 60% (Hazard Ratio 1.04, p = 0.95. Four-year event free survival (EFS) among M0 patients for focal RT was 45.6% and for CSI was 60% (Hazard Ratio 0.71, p = 0.519). For all patients, the 4-year OS comparing focal RT with CSI was 54.4% vs 60% respectively (p = 0.944), and the 4-year EFS for focal RT or CSI was 42.8% vs 51.4% respectively (p = 0.610). CONCLUSION: The PPCR ATRT cohort found no differences in outcomes according to receipt of either higher primary dose or larger RT field (CSI). However, most patients were M0 and received focal RT. A lower primary dose (50.4 Gy), regardless of patient age, is appealing for further study as part of multi-modality therapy.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Tumor Rabdoide , Teratoma , Niño , Humanos , Lactante , Preescolar , Adolescente , Protones , Tumor Rabdoide/genética , Tumor Rabdoide/radioterapia , Estudios Prospectivos , Terapia Combinada , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/radioterapia , Sistema de Registros , Teratoma/genética , Teratoma/radioterapia , Teratoma/tratamiento farmacológico
4.
Med Phys ; 49(7): 4293-4304, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35488864

RESUMEN

BACKGROUND: Dose deposition characteristics of proton radiation can be advantageous over photons. Proton treatment planning, however, poses additional challenges for the planners. Proton therapy is usually delivered with only a small number of beam angles, and the quality of a proton treatment plan is largely determined by the beam angles employed. Finding the optimal beam angles for a proton treatment plan requires time and experience, motivating the investigation of automatic beam angle selection methods. PURPOSE: A deep learning-based approach to automatic beam angle selection is proposed for the proton pencil-beam scanning treatment planning of liver lesions. METHODS: We cast beam-angle selection as a multi-label classification problem. To account for angular boundary discontinuity, the underlying convolution neural network is trained with the proposed Circular Earth Mover's Distance-based regularization and multi-label circular-smooth label technique. Furthermore, an analytical algorithm emulating proton treatment planners' clinical practice is employed in post-processing to improve the output of the model. Forty-nine patients that received proton liver treatments between 2017 and 2020 were randomly divided into training (n = 31), validation (n = 7), and test sets (n = 11). AI-selected beam angles were compared with those angles selected by human planners, and the dosimetric outcome was investigated by creating plans using knowledge-based treatment planning. RESULTS: For 7 of the 11 cases in the test set, AI-selected beam angles agreed with those chosen by human planners to within 20° (median angle difference = 10°; mean = 18.6°). Moreover, out of the total 22 beam angles predicted by the model, 15 (68%) were within 10° of the human-selected angles. The high correlation in beam angles resulted in comparable dosimetric statistics between proton treatment plans generated using AI- and human-selected angles. For the cases with beam angle differences exceeding 20°, the dosimetric analysis showed similar plan quality although with different emphases on organ-at-risk sparing. CONCLUSIONS: This pilot study demonstrated the feasibility of a novel deep learning-based beam angle selection technique. Testing on liver cancer patients showed that the resulting plans were clinically viable with comparable dosimetric quality to those using human-selected beam angles. In tandem with auto-contouring and knowledge-based treatment planning tools, the proposed model could represent a pathway for nearly fully automated treatment planning in proton therapy.


Asunto(s)
Aprendizaje Profundo , Hígado , Terapia de Protones , Radioterapia de Intensidad Modulada , Humanos , Proyectos Piloto , Terapia de Protones/métodos , Protones , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos
5.
Clin Transl Radiat Oncol ; 34: 37-41, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35345865

RESUMEN

Purpose: Pediatric brain tumor patients are vulnerable to radiotherapy (RT) sequelae including endocrinopathies. We compared post-RT neuroendocrine outcomes between pediatric brain tumor patients receiving photons (XRT) versus protons (PRT). Methods: Using a prospectively maintained single-institution database, we analyzed 112 pediatric primary brain tumor patients (80 XRT, 32 PRT) from 1996 to 2019. Patient/treatment characteristics and endocrinopathy diagnoses (growth hormone deficiency [GHD], sex hormone deficiency [SHD], hypothyroidism, and requirement of hormone replacement [HRT]) were obtained via chart review. Univariable/multivariable logistic regression identified neuroendocrine outcome predictors. Time-adjusted propensity score models accounted for treatment type. Craniospinal irradiation (CSI) patients were evaluated as a sub-cohort. Results: Median follow-up was 6.3 and 4.4 years for XRT and PRT patients respectively. Medulloblastoma was the most common histology (38%). Half of patients (44% in XRT, 60% in PRT) received CSI. Common endocrinopathies were GHD (26% XRT, 38% PRT) and hypothyroidism (29% XRT, 19% PRT). CSI cohort PRT patients had lower odds of hypothyroidism (OR 0.16, 95% CI[0.02-0.87], p = 0.045) on multivariable regression and propensity score analyses. There were no significant differences in endocrinopathies in the overall cohort and in the odds of GHD or HRT within the CSI cohort. SHD developed in 17.1% of the XRT CSI group but did not occur in the PRT CSI group. Conclusion: Endocrinopathies were common among pediatric brain tumor survivors. Among CSI patients, PRT was associated with lower risk of hypothyroidism, and potentially associated with lower incidence of SHD. Future studies should involve collaborative registries to explore the survivorship benefits of PRT.

6.
Pediatr Blood Cancer ; 69(5): e29489, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34866330

RESUMEN

PURPOSE: In growing children, craniospinal irradiation (CSI) has historically treated the entire vertebral body (VB) to avoid potential long-term spinal abnormalities. Vertebral body-sparing proton craniospinal irradiation (VBSpCSI) is a technique that spares the majority of the VB from significant irradiation, and long-term safety outcomes have been reported previously. This retrospective study reviews the acute toxicity profile of children treated with VBSpCSI in a cohort comparison with photon-based craniospinal radiotherapy (3DCRT). METHODS: Thirty-eight pediatric CSI patients treated between 2008 and 2018 were retrospectively evaluated for treatment-related toxicity. Acute toxicity outcomes and acute hematologic profiles were compared according to treatment modality, either VBSpCSI or 3DCRT. Statistical analysis was performed using Fisher's exact test for toxicity. RESULTS: Twenty-five patients received VBSpCSI and 13 patients received photon CSI. Mean patient age at treatment was 7.5 years (range 2-16). The cohorts were well matched with respect to gender, age, and CSI dose. Patients receiving VBSpCSI had lower rates of grade 2+ gastrointestinal (GI) toxicity (24% vs. 76.5%, p = .005), grade 2+ nausea (24% vs. 61.5%, p = .035), and any-grade esophagitis (0% vs. 38%, p = .0026). Patients treated with VBSpCSI had lower red blood cell transfusion rates (21.7% vs. 60%, p = .049) and grade 4+ lymphopenia (33.3% vs. 77.8%, p = .046). CONCLUSIONS: VBSpCSI in children is a volumetric de-escalation from traditional volumes, which irradiate the entire VB to full or intermediate doses. In our study, VBSpCSI was associated with lower rates of acute GI and hematologic toxicities. Long-term growth outcomes and disease control outcomes are needed for this technique.


Asunto(s)
Irradiación Craneoespinal , Terapia de Protones , Adolescente , Niño , Preescolar , Irradiación Craneoespinal/efectos adversos , Irradiación Craneoespinal/métodos , Humanos , Terapia de Protones/efectos adversos , Terapia de Protones/métodos , Protones , Dosificación Radioterapéutica , Estudios Retrospectivos , Cuerpo Vertebral
7.
Int J Radiat Oncol Biol Phys ; 112(4): 901-912, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34808253

RESUMEN

PURPOSE: Craniospinal irradiation (CSI) is commonly used for pediatric brain tumors with a propensity for spread in craniospinal fluid, principally medulloblastoma. Evolving technology has led to the use of highly conformal radiation therapy (RT) techniques for CSI, including proton therapy. Target delineation and plan coverage are critical for CSI, but there is ongoing controversy and variability in these realms, with little available data on practice patterns. We sought to characterize proton CSI practice patterns in the United States by examining CSI plans in the Pediatric Proton/Photon Consortium Registry (PPCR). MATERIALS AND METHODS: PPCR was queried for data on proton CSI patients from 2015 to early 2020. Each plan was manually reviewed, determining patient position; prescription dose; and coverage of optic nerves, vertebral bodies, spinal nerve roots, sacral nerves, and cranial foramina, among other variables. Two radiation oncologists blinded to clinical data and treating institution assessed coverage at the 95% prescription isodose line and per published European Society for Paediatric Oncology guidelines. Variability in coverage was assessed with nonparametric tests and univariate and multivariate logistic regression. RESULTS: PPCR supplied data for 450 patients, 384 of whom had an evaluable portion of a CSI plan. Most patients (90.3%) were supine. Optic nerves were fully covered in 48.2%; sacral nerves in 87.7%; cranial foramina in 69.3%; and spinal nerves in 95.6%. Vertebral body (VB) sparing was used in 18.6% of skeletally immature cases, increasing over time (P < .001). Coverage in all categories was significantly different among treating institutions, on univariate and multivariate analyses. Cribriform plate deficits were rare, with marginal misses of the foramen ovale (17.4%) and frontal lobe (12%) most common. CONCLUSION: We found consistent variation based on treating institution in proton CSI practices including optic nerve, VB, sacral nerve, cranial, and spinal nerve coverage. These data may serve as a baseline quantification of current proton CSI practices in the United States as they continue to evolve.


Asunto(s)
Neoplasias Cerebelosas , Irradiación Craneoespinal , Meduloblastoma , Terapia de Protones , Neoplasias Cerebelosas/radioterapia , Niño , Irradiación Craneoespinal/métodos , Humanos , Meduloblastoma/radioterapia , Terapia de Protones/métodos , Protones , Sistema de Registros , Estados Unidos
8.
Int J Radiat Oncol Biol Phys ; 111(5): 1155-1164, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34352289

RESUMEN

PURPOSE: The aim of this study was to examine current practice patterns in pediatric total body irradiation (TBI) techniques among COG member institutions. METHODS AND MATERIALS: Between November 2019 and February 2020, a questionnaire containing 52 questions related to the technical aspects of TBI was sent to medical physicists at 152 COG institutions. The questions were designed to obtain technical information on commonly used TBI treatment techniques. Another set of 9 questions related to the clinical management of patients undergoing TBI was sent to 152 COG member radiation oncologists at the same institutions. RESULTS: Twelve institutions were excluded because TBI was not performed in their institutions. A total of 88 physicists from 88 institutions (63% response rate) and 96 radiation oncologists from 96 institutions (69% response rate) responded. The anterior-posterior/posterior-anterior (AP/PA) technique was the most common technique reported (49 institutions [56%]); 44 institutions (50%) used the lateral technique, and 14 (16%) used volumetric modulated arc therapy or tomotherapy. Midplane dose rates of 6 to 15 cGy/min were most commonly used. The most common specification for lung dose was the midlung dose for both AP/PA techniques (71%) and lateral techniques (63%). Almost all physician responders agreed with the need to refine current TBI techniques, and 79% supported the investigation of new TBI techniques to further lower the lung dose. CONCLUSIONS: There was no consistency in the practice patterns, methods for dose measurement, and reporting of TBI doses among COG institutions. The lack of standardization precludes meaningful correlation between TBI doses and clinical outcomes including disease control and normal tissue toxicity. The COG radiation oncology discipline is currently undertaking several steps to standardize the practice and dose reporting of pediatric TBI using detailed questionnaires and phantom-based credentialing for all COG centers.


Asunto(s)
Oncología por Radiación , Radioterapia de Intensidad Modulada , Niño , Humanos , Pulmón , Encuestas y Cuestionarios , Irradiación Corporal Total
9.
J Natl Compr Canc Netw ; 19(8): 945-977, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34416707

RESUMEN

The NCCN Guidelines for Wilms Tumor focus on the screening, diagnosis, staging, treatment, and management of Wilms tumor (WT, also known as nephroblastoma). WT is the most common primary renal tumor in children. Five-year survival is more than 90% for children with all stages of favorable histology WT who receive appropriate treatment. All patients with WT should be managed by a multidisciplinary team with experience in managing renal tumors; consulting a pediatric oncologist is strongly encouraged. Treatment of WT includes surgery, neoadjuvant or adjuvant chemotherapy, and radiation therapy (RT) if needed. Careful use of available therapies is necessary to maximize cure and minimize long-term toxicities. This article discusses the NCCN Guidelines recommendations for favorable histology WT.


Asunto(s)
Neoplasias Renales , Tumor de Wilms , Quimioterapia Adyuvante , Niño , Humanos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/terapia , Terapia Neoadyuvante , Estadificación de Neoplasias , Tumor de Wilms/tratamiento farmacológico , Tumor de Wilms/terapia
11.
Int J Radiat Oncol Biol Phys ; 109(2): 505-514, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32931864

RESUMEN

PURPOSE: Treatment with radiation therapy (RT) can cause anxiety and distress for pediatric patients and their families. Radiation oncology teams have developed strategies to reduce the negative psychological impact. This survey study aimed to characterize these methods. METHODS AND MATERIALS: A 37-item questionnaire was sent to all radiation oncology members of the Children's Oncology Group to explore strategies to improve the pediatric patient experience. The Wilcoxon rank-sum test was used to assess factors associated with use of anesthesia for older children. RESULTS: Surveys were completed by 106 individuals from 84/210 institutions (40%). Respondents included 89 radiation oncologists and 17 supportive staff. Sixty-one percent of centers treated ≤50 children per year. Respondents described heterogenous interventions. The median age at which most children no longer required anesthesia was 6 years (range: ≤3 years to ≥8 years). Routine anesthesia use at an older age was associated with physicians' lack of awareness of these strategies (P = .04) and <10 years of pediatric radiation oncology experience (P = .04). Fifty-two percent of respondents reported anesthesia use added >45 minutes in the radiation oncology department daily. Twenty-six percent of respondents planned to implement new strategies, with 65% focusing on video-based distraction therapy and/or augmented reality/virtual reality. CONCLUSIONS: Many strategies are used to improve children's experience during RT. Lack of awareness of these interventions is a barrier to their implementation and is associated with increased anesthesia use. This study aims to disseminate these methods with the goal of raising awareness, facilitating implementation, and, ultimately, improving the experience of pediatric cancer patients and their caregivers.


Asunto(s)
Neoplasias/radioterapia , Satisfacción del Paciente/estadística & datos numéricos , Radioterapia/psicología , Cuidadores/psicología , Niño , Preescolar , Femenino , Conocimientos, Actitudes y Práctica en Salud , Humanos , Masculino
12.
Br J Radiol ; 93(1107): 20190673, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31600082

RESUMEN

OBJECTIVE: The Pediatric Proton/Photon Consortium Registry (PPCR) is a comprehensive data registry composed of pediatric patients treated with radiation. It was established to expedite outcomes-based research. The attributes which allow the PPCR to be a successful collaboration are reviewed. METHODS AND MATERIALS: Current eligibility criteria are radiotherapy patients < 22 years treated at one of the 15 US participating institutions. Detailed health and treatment data are collected about the disease presentation and treatment exposures, and annually thereafter, in REDCap (Research Electronic Data Capture). DICOM (Digital Imaging and Communications in Medicine) imaging and radiation plans are collected through MIM/MIMcloud. An optional patient-reported quality-of-life (PedsQL) study is administered at 10 sites. RESULTS: Accrual started October 2012 with 2,775 participants enrolled as of 25 July 2019. Most patients, 62.0%, were treated for central nervous system (CNS) tumors, the most common of which are medulloblastoma (n = 349), ependymoma (n = 309), and glial/astrocytoma tumors (n = 279). The most common non-CNS diagnoses are rhabdomyosarcoma (n = 284), Ewing's sarcoma (n = 153), and neuroblastoma (n = 130). While the majority of participants are US residents, 18.7% come from 36 other countries. Over 685 patients participate in the PedsQL study. CONCLUSIONS: The PPCR is a valuable research platform capable of answering countless research questions that will ultimately improve patient care. Centers outside of the USA are invited to participate directly or may engage with the PPCR to align data collection strategies to facilitate large-scale international research. ADVANCES IN KNOWLEDGE: For investigators looking to carry out research in a large pediatric oncology cohort or interested in registry work, this paper provides an updated overview of the PPCR.


Asunto(s)
Recolección de Datos/normas , Neoplasias/radioterapia , Fotones/uso terapéutico , Terapia de Protones/estadística & datos numéricos , Sistema de Registros/estadística & datos numéricos , Adolescente , Astrocitoma/radioterapia , Neoplasias del Sistema Nervioso Central/radioterapia , Neoplasias Cerebelosas/radioterapia , Niño , Preescolar , Nube Computacional , Ependimoma/radioterapia , Femenino , Glioma/radioterapia , Humanos , Lactante , Cooperación Internacional , Masculino , Meduloblastoma/radioterapia , Medición de Resultados Informados por el Paciente , Calidad de Vida , Autoinforme , Adulto Joven
13.
Adv Radiat Oncol ; 2(2): 220-227, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28740935

RESUMEN

PURPOSE: To investigate the long-term effects of vertebral-body-sparing proton craniospinal irradiation (CSI) on the spine of young patients with medulloblastoma. METHODS AND MATERIALS: Six children between the ages of 3 and 5 years with medulloblastoma were treated with vertebral-body-sparing proton CSI after maximal safe resection. Radiation therapy was delivered in the supine position with posterior beams targeting the craniospinal axis, and the proton beam was stopped anterior to the thecal sac. Patients were treated with a dose of either 23.4 Gy or 36 Gy to the craniospinal axis followed by a boost to the posterior fossa and any metastatic lesions. Chemotherapy varied by protocol. Radiographic effects on the spine were evaluated with serial imaging, either with magnetic resonance imaging scans or plain film using Cobb angle calculations, the presence of thoracic lordosis, lumbar vertebral body-to-disc height ratios, and anterior-posterior height ratios. Clinical outcomes were evaluated by patient/family interview and medical chart review. RESULTS: Overall survival and disease free survival were 83% (5/6) at follow-up. Median clinical and radiographic follow-up were 13.6 years and 12.3 years, respectively. Two patients were clinically diagnosed with scoliosis and treated conservatively. At the time of follow-up, no patients had experienced chronic back pain or required spine surgery. No patients were identified to have thoracic lordosis. Diminished growth of the posterior portions of vertebral bodies was identified in all patients, with an average posterior to anterior ratio of 0.88, which was accompanied by compensatory hypertrophy of the posterior intervertebral discs. CONCLUSION: Vertebral-body-sparing CSI with proton beam did not appear to cause increased severe spinal abnormalities in patients treated at our institution. This approach could be considered in future clinical trials in an effort to reduce toxicity and the risk of secondary malignancy and to improve adult height.

14.
J Med Chem ; 59(24): 10974-10993, 2016 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-28002967

RESUMEN

As part of our ongoing efforts to identify novel ligands for the metabotropic glutamate 2 and 3 (mGlu2/3) receptors, we have incorporated substitution at the C3 and C4 positions of the (1S,2R,5R,6R)-2-amino-bicyclo[3.1.0]hexane-2,6-dicarboxylic acid scaffold to generate mGlu2/3 antagonists. Exploration of this structure-activity relationship (SAR) led to the identification of (1S,2R,3S,4S,5R,6R)-2-amino-3-[(3,4-difluorophenyl)sulfanylmethyl]-4-hydroxy-bicyclo[3.1.0]hexane-2,6-dicarboxylic acid hydrochloride (LY3020371·HCl, 19f), a potent, selective, and maximally efficacious mGlu2/3 antagonist. Further characterization of compound 19f binding to the human metabotropic 2 glutamate (hmGlu2) site was established by cocrystallization of this molecule with the amino terminal domain (ATD) of the hmGlu2 receptor protein. The resulting cocrystal structure revealed the specific ligand-protein interactions, which likely explain the high affinity of 19f for this site and support its functional mGlu2 antagonist pharmacology. Further characterization of 19f in vivo demonstrated an antidepressant-like signature in the mouse forced-swim test (mFST) assay when brain levels of this compound exceeded the cellular mGlu2 IC50 value.


Asunto(s)
Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Descubrimiento de Drogas , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Animales , Antidepresivos/síntesis química , Antidepresivos/química , Encéfalo/efectos de los fármacos , Ciclohexanos/síntesis química , Ciclohexanos/química , Ciclohexanos/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Ratones , Ratones Endogámicos , Modelos Moleculares , Estructura Molecular , Actividad Motora/efectos de los fármacos , Receptores de Glutamato Metabotrópico/química , Receptores de Glutamato Metabotrópico/aislamiento & purificación , Relación Estructura-Actividad , Natación
16.
Magn Reson Imaging ; 32(9): 1097-101, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25240720

RESUMEN

The purpose of this study was to evaluate a magnetic resonance imaging (MRI) technique for quantifying the proton density water fraction (PDWF) as a biomarker of bone marrow cellularity. Thirty-six human bone marrow specimens from 18 donors were excised and subjected to different measurements of tissue composition: PDWF quantification using a multiple gradient echo MRI technique, three biochemical assays (triglyceride, total lipid and water content) and a histological assessment of cellularity. Results showed a strong correlation between PDWF and bone marrow cellularity from histology (r=0.72). A strong correlation was also found between PDWF and the biochemical assay of water content (r=0.76). These results suggest the PDWF is a predictor of bone marrow cellularity in tissues and can provide a non-invasive assessment of bone marrow changes in clinical patients undergoing radiotherapy.


Asunto(s)
Médula Ósea/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Anciano , Agua Corporal , Células de la Médula Ósea , Cadáver , Femenino , Humanos , Vértebras Lumbares , Masculino , Persona de Mediana Edad , Protones , Reproducibilidad de los Resultados , Vértebras Torácicas
17.
Oral Oncol ; 50(1): 40-4, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24134948

RESUMEN

OBJECTIVES: Black patients with head and neck cancer (HNC) have poorer survival and disease control compared to non-black patients, but disparities in death from non-cancer causes (i.e., competing mortality) are less well-studied. MATERIALS AND METHODS: We conducted an analysis of 538 patients (169 black, 369 non-black) with stage III-IV HNC treated on one of six multi-institutional protocols between 1993 and 2004 involving multi-agent chemoradiotherapy with or without surgery. Competing mortality was defined as death due to intercurrent comorbid disease, treatment-related morbidity, or unknown cause in the absence of disease recurrence, progression, or second malignancy. Cox proportional hazards and competing risks regression were used to estimate the effect of black race on competing mortality. RESULTS: Black race was associated with increased rates of comorbidity, smoking, heavy alcohol use, advanced tumor stage, and poorer performance status (p<.001 for all). Compared to non-black patients, black HNC patients had a higher 5 year cumulative incidence of disease progression (31.4%; 95% CI, 24.4-38.5% vs 23.4%; 95% CI, 19.1-28.1%) and competing mortality (28.1%; 95% CI, 21.2-35.3% vs 14.5%; 95% CI, 11.0-18.5%). When adjusting for age, male sex, body mass index, distance traveled, smoking and alcohol use, performance status, comorbidity, and tumor stage, the black race was associated with death from comorbid disease (Cox hazard ratio 2.13; 95% CI, 1.06-4.28, p=0.033). CONCLUSIONS: Black patients with advanced HNC are at increased risk of both disease progression and death from competing non-cancer mortality, particularly death from comorbid disease. Improved strategies to manage comorbid disease may increase the benefit of treatment intensification in black patients.


Asunto(s)
Neoplasias de Cabeza y Cuello/mortalidad , Grupos de Población , Terapia Combinada , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/radioterapia , Humanos
18.
PLoS One ; 8(12): e84147, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24367637

RESUMEN

The enhancer-of-zeste homolog 2 (EZH2) gene product is an 87 kDa polycomb group (PcG) protein containing a C-terminal methyltransferase SET domain. EZH2, along with binding partners, i.e., EED and SUZ12, upon which it is dependent for activity forms the core of the polycomb repressive complex 2 (PRC2). PRC2 regulates gene silencing by catalyzing the methylation of histone H3 at lysine 27. Both overexpression and mutation of EZH2 are associated with the incidence and aggressiveness of various cancers. The novel crystal structure of the SET domain was determined in order to understand disease-associated EZH2 mutations and derive an explanation for its inactivity independent of complex formation. The 2.00 Å crystal structure reveals that, in its uncomplexed form, the EZH2 C-terminus folds back into the active site blocking engagement with substrate. Furthermore, the S-adenosyl-L-methionine (SAM) binding pocket observed in the crystal structure of homologous SET domains is notably absent. This suggests that a conformational change in the EZH2 SET domain, dependent upon complex formation, must take place for cofactor and substrate binding activities to be recapitulated. In addition, the data provide a structural context for clinically significant mutations found in the EZH2 SET domain.


Asunto(s)
Dominio Catalítico/genética , Enfermedad/genética , Mutación , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/metabolismo , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Proteína Potenciadora del Homólogo Zeste 2 , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Complejo Represivo Polycomb 2/genética , Células Sf9 , Spodoptera
19.
J Med Chem ; 56(3): 963-9, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23311358

RESUMEN

The sirtuin SIRT1 is a NAD(+)-dependent histone deacetylase, a Sir2 family member, and one of seven human sirtuins. Sirtuins are conserved from archaea to mammals and regulate transcription, genome stability, longevity, and metabolism. SIRT1 regulates transcription via deacetylation of transcription factors such as PPARγ, NFκB, and the tumor suppressor protein p53. EX527 (27) is a nanomolar SIRT1 inhibitor and a micromolar SIRT2 inhibitor. To elucidate the mechanism of SIRT inhibition by 27, we determined the 2.5 Å crystal structure of the SIRT1 catalytic domain (residues 241-516) bound to NAD(+) and the 27 analogue compound 35. 35 binds deep in the catalytic cleft, displacing the NAD(+) nicotinamide and forcing the cofactor into an extended conformation. The extended NAD(+) conformation sterically prevents substrate binding. The SIRT1/NAD(+)/35 crystal structure defines a novel mechanism of histone deacetylase inhibition and provides a basis for understanding, and rationally improving, inhibition of this therapeutically important target by drug-like molecules.


Asunto(s)
Carbazoles/farmacología , Inhibidores de Histona Desacetilasas/farmacología , NAD/metabolismo , Sirtuina 1/metabolismo , Carbazoles/química , Dominio Catalítico , Cristalografía por Rayos X , Inhibidores de Histona Desacetilasas/química , Humanos , Modelos Moleculares , Conformación Proteica , Sirtuina 1/química , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...