Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(16): e2317290121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588424

RESUMEN

A central prediction of evolutionary theory is that energy invested into reproduction comes at the expense of somatic maintenance and repair, accelerating biological aging. Supporting this prediction are findings that high fertility among women predicts shorter lifespan and poorer health later in life. However, biological aging is thought to begin before age-related health declines, limiting the applicability of morbidity and mortality for studying the aging process earlier in life. Here, we examine the relationship between reproductive history and biological aging in a sample of young (20 to 22yo) men and women from the Cebu Longitudinal Health and Nutrition Survey, located in the Philippines (n = 1,735). We quantify biological aging using six measures, collectively known as epigenetic clocks, reflecting various facets of cellular aging, health, and mortality risk. In a subset of women, we test whether longitudinal changes in gravidity between young and early-middle adulthood (25 to 31yo) are associated with changes in epigenetic aging during that time. Cross-sectionally, gravidity was associated with all six measures of accelerated epigenetic aging in women (n = 825). Furthermore, longitudinal increases in gravidity were linked to accelerated epigenetic aging in two epigenetic clocks (n = 331). In contrast, the number of pregnancies a man reported fathering was not associated with epigenetic aging among same-aged cohort men (n = 910). These effects were robust to socioecological, environmental, and immunological factors, consistent with the hypothesis that pregnancy accelerates biological aging and that these effects can be detected in young women in a high-fertility context.


Asunto(s)
Envejecimiento , Reproducción , Embarazo , Masculino , Humanos , Femenino , Adulto , Filipinas , Envejecimiento/genética , Reproducción/genética , Senescencia Celular , Epigénesis Genética , Metilación de ADN
3.
Geroscience ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466455

RESUMEN

In humans, DNA methylation (DNAm) based estimators of telomere length (TL) have been shown to better predict TL-associated variables (e.g., age, sex, and mortality) than TL itself. The biological significance of DNAm-based estimators of TL (DNAmTL) is unclear. In vitro DNAmTL shortens with cell replications, even when telomerase is maintaining TL. Telomerase is typically suppressed in humans, except in testes. Accordingly, sperm TL increases with age, and offspring with greater paternal age at conception (PAC) have longer TL. Thus, we expect that PAC associations with DNAmTL can shed light on whether in vivo cell replications in the presence of high telomerase activity (production of sperm) shorten DNAmTL or if PAC-lengthened TL causes lengthened DNAmTL. In a pre-registered analysis, using data from 1733 blood samples from the Philippines, we examined the association between paternal age at conception (PAC) and offspring DNAmTL. We did not find an association between PAC and DNAmTL but found a positive association of paternal grandfather's age at father's conception predicting grandchild's DNAmTL. In post hoc analyses, we examined how DNAmTL versus qPCR-measured TL (qPCR-TL) correlated with measures typically associated with TL. Contrary to previous findings, on almost all measures of external validity (correlations with parental TLs, southern blot TL, and age), qPCR-TL outperformed DNAmTL. The "kilobase" units of DNAm-based estimators of TL showed considerable deviations from southern blot-derived kilobase measures. Our findings suggest that DNAmTL is not a reliable index of inherited aspects of TL and underscores uncertainty about the biological meaning of DNAmTL.

4.
Respir Res ; 24(1): 124, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37143066

RESUMEN

BACKGROUND: People living with HIV (PLWH) are at increased risk of developing Chronic Obstructive Pulmonary Disease (COPD) independent of cigarette smoking. We hypothesized that dysbiosis in PLWH is associated with epigenetic and transcriptomic disruptions in the airway epithelium. METHODS: Airway epithelial brushings were collected from 18 COPD + HIV + , 16 COPD - HIV + , 22 COPD + HIV - and 20 COPD - HIV - subjects. The microbiome, methylome, and transcriptome were profiled using 16S sequencing, Illumina Infinium Methylation EPIC chip, and RNA sequencing, respectively. Multi 'omic integration was performed using Data Integration Analysis for Biomarker discovery using Latent cOmponents. A correlation > 0.7 was used to identify key interactions between the 'omes. RESULTS: The COPD + HIV -, COPD -HIV + , and COPD + HIV + groups had reduced Shannon Diversity (p = 0.004, p = 0.023, and p = 5.5e-06, respectively) compared to individuals with neither COPD nor HIV, with the COPD + HIV + group demonstrating the most reduced diversity. Microbial communities were significantly different between the four groups (p = 0.001). Multi 'omic integration identified correlations between Bacteroidetes Prevotella, genes FUZ, FASTKD3, and ACVR1B, and epigenetic features CpG-FUZ and CpG-PHLDB3. CONCLUSION: PLWH with COPD manifest decreased diversity and altered microbial communities in their airway epithelial microbiome. The reduction in Prevotella in this group was linked with epigenetic and transcriptomic disruptions in host genes including FUZ, FASTKD3, and ACVR1B.


Asunto(s)
Infecciones por VIH , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Disbiosis/genética , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/genética , Perfilación de la Expresión Génica , Epitelio , Infecciones por VIH/epidemiología , Infecciones por VIH/genética
5.
Biomedicines ; 10(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36551848

RESUMEN

One key feature of Chronic Obstructive Pulmonary Disease (COPD) is that its prevalence increases exponentially with age. DNA methylation clocks have become powerful biomarkers to detect accelerated aging in a variety of diseases and can help prognose outcomes in severe COPD. This study investigated which DNA methylation clock could best reflect airway epigenetic age when used in more accessible blood samples. Our analyses showed that out of six DNA methylation clocks investigated, DNAmGrimAge demonstrated the strongest correlation and the smallest difference between the airway epithelium and blood. Our findings suggests that blood DNAmGrimAge accurately reflects airway epigenetic age of individuals and that its elevation is highly associated with COPD.

6.
Front Aging ; 3: 1007098, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36506464

RESUMEN

Sex differences in aging manifest in disparities in disease prevalence, physical health, and lifespan, where women tend to have greater longevity relative to men. However, in the Mediterranean Blue Zones of Sardinia (Italy) and Ikaria (Greece) are regions of centenarian abundance, male-female centenarian ratios are approximately one, diverging from the typical trend and making these useful regions in which to study sex differences of the oldest old. Additionally, these regions can be investigated as examples of healthy aging relative to other populations. DNA methylation (DNAm)-based predictors have been developed to assess various health biomarkers, including biological age, Pace of Aging, serum interleukin-6 (IL-6), and telomere length. Epigenetic clocks are biological age predictors whose deviation from chronological age has been indicative of relative health differences between individuals, making these useful tools for interrogating these differences in aging. We assessed sex differences between the Horvath, Hannum, GrimAge, PhenoAge, Skin and Blood, and Pace of Aging predictors from individuals in two Mediterranean Blue Zones and found that men displayed positive epigenetic age acceleration (EAA) compared to women according to all clocks, with significantly greater rates according to GrimAge (ß = 3.55; p = 1.22 × 10-12), Horvath (ß = 1.07; p = 0.00378) and the Pace of Aging (ß = 0.0344; p = 1.77 × 10-08). Other DNAm-based biomarkers findings indicated that men had lower DNAm-predicted serum IL-6 scores (ß = -0.00301, p = 2.84 × 10-12), while women displayed higher DNAm-predicted proportions of regulatory T cells than men from the Blue Zone (p = 0.0150, 95% Confidence Interval [0.00131, 0.0117], Cohen's d = 0.517). All clocks showed better correlations with chronological age in women from the Blue Zones than men, but all clocks showed large mean absolute errors (MAE >30 years) in both sexes, except for PhenoAge (MAE <5 years). Thus, despite their equal survival to older ages in these Mediterranean Blue Zones, men in these regions remain biologically older by most measured DNAm-derived metrics than women, with the exception of the IL-6 score and proportion of regulatory T cells.

7.
Respir Res ; 23(1): 248, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114491

RESUMEN

BACKGROUND: Single nucleotide polymorphisms (SNPs) of peroxisome proliferator-activated receptor gamma (PPAR-γ; gene: PPARG) and oxidative stress genes are associated with asthma risk. However, whether such variants modulate responses to dibutyl phthalate (DBP), a common plasticizer associated with increased asthma development, remains unknown. The purpose of this study is to investigate how SNPs in PPARG and oxidative stress genes, as represented by two separate genetic risk scores, modify the impact of DBP exposure on lung function and the airway and systemic response after an inhaled allergen challenge. METHODS: We conducted a double-blinded human crossover study with sixteen allergen-sensitized participants exposed for three hours to DBP and control air on distinct occasions separated by a 4-week washout. Each exposure was followed by an allergen inhalation challenge; subsequently, lung function was measured, and blood and bronchoalveolar lavage (BAL) were collected and analyzed for cell counts and allergen-specific immunoglobulin E (IgE). Genetic risk scores for PPAR-γ (P-GRS; weighted sum of PPARG SNPs rs10865710, rs709158, and rs3856806) and oxidative stress (OS-GRS; unweighted sum of 16 SNPs across multiple genes) were developed, and their ability to modify DBP effects were assessed using linear mixed-effects models. RESULTS: P-GRS and OS-GRS modified DBP effects on allergen-specific IgE in blood at 20 h (interaction effect [95% CI]: 1.43 [1.13 to 1.80], p = 0.005) and 3 h (0.99 [0.98 to 1], p = 0.03), respectively. P-GRS also modified DBP effects on Th2 cells in blood at 3 h (- 25.2 [- 47.7 to - 2.70], p = 0.03) and 20 h (- 39.1 [- 57.9 to - 20.3], p = 0.0005), and Th2 cells in BAL at 24 h (- 4.99 [- 8.97 to - 1.01], p = 0.02). An increasing P-GRS associated with reduced DBP effect on Th2 cells. Neither GRS significantly modified DBP effects on lung function parameters. CONCLUSIONS: PPAR-γ variants modulated several airway and systemic immune responses to the ubiquitous chemical plasticizer DBP. Our results suggest that PPAR-γ variants may play a greater role than those in oxidative stress-related genes in airway allergic responses to DBP. TRIAL REGISTRATION: This study reports results from The Phthalate-Allergen Immune Response Study that was registered on ClinicalTrials.gov with identification NCT02688478.


Asunto(s)
Asma , Dibutil Ftalato , Alérgenos , Estudios Cruzados , Dibutil Ftalato/toxicidad , Humanos , Inmunoglobulina E , PPAR gamma/genética , Plastificantes
8.
Clin Epigenetics ; 14(1): 78, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35733189

RESUMEN

Adverse birth outcomes, such as early gestational age and low birth weight, can have lasting effects on morbidity and mortality, with impacts that persist into adulthood. Identifying the maternal factors that contribute to adverse birth outcomes in the next generation is thus a priority. Epigenetic clocks, which have emerged as powerful tools for quantifying biological aging and various dimensions of physiological dysregulation, hold promise for clarifying relationships between maternal biology and infant health, including the maternal factors or states that predict birth outcomes. Nevertheless, studies exploring the relationship between maternal epigenetic age and birth outcomes remain few. Here, we attempt to replicate a series of analyses previously reported in a US-based sample, using a larger similarly aged sample (n = 296) of participants of a long-running study in the Philippines. New pregnancies were identified prospectively, dried blood spot samples were collected during the third trimester, and information was obtained on gestational age at delivery and offspring weight after birth. Genome-wide DNA methylation was assessed with the Infinium EPIC array. Using a suite of 15 epigenetic clocks, we only found one significant relationship: advanced age on the epigenetic clock trained on leptin predicted a significantly earlier gestational age at delivery (ß = - 0.15, p = 0.009). Of the other 29 relationships tested predicting gestational age and offspring birth weight, none were statistically significant. In this sample of Filipino women, epigenetic clocks capturing multiple dimensions of biology and health do not predict birth outcomes in offspring.


Asunto(s)
Cebus , Complicaciones del Embarazo , Adulto , Anciano , Animales , Peso al Nacer/genética , Metilación de ADN , Epigénesis Genética , Femenino , Edad Gestacional , Humanos , Filipinas , Embarazo
9.
Epigenetics Chromatin ; 14(1): 54, 2021 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-34895312

RESUMEN

BACKGROUND: Understanding the molecular basis of susceptibility factors to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global health imperative. It is well-established that males are more likely to acquire SARS-CoV-2 infection and exhibit more severe outcomes. Similarly, exposure to air pollutants and pre-existing respiratory chronic conditions, such as asthma and chronic obstructive respiratory disease (COPD) confer an increased risk to coronavirus disease 2019 (COVID-19). METHODS: We investigated molecular patterns associated with risk factors in 398 candidate genes relevant to COVID-19 biology. To accomplish this, we downloaded DNA methylation and gene expression data sets from publicly available repositories (GEO and GTEx Portal) and utilized data from an empirical controlled human exposure study conducted by our team. RESULTS: First, we observed sex-biased DNA methylation patterns in autosomal immune genes, such as NLRP2, TLE1, GPX1, and ARRB2 (FDR < 0.05, magnitude of DNA methylation difference Δß > 0.05). Second, our analysis on the X-linked genes identified sex associated DNA methylation profiles in genes, such as ACE2, CA5B, and HS6ST2 (FDR < 0.05, Δß > 0.05). These associations were observed across multiple respiratory tissues (lung, nasal epithelia, airway epithelia, and bronchoalveolar lavage) and in whole blood. Some of these genes, such as NLRP2 and CA5B, also exhibited sex-biased gene expression patterns. In addition, we found differential DNA methylation patterns by COVID-19 status for genes, such as NLRP2 and ACE2 in an exploratory analysis of an empirical data set reporting on human COVID-9 infections. Third, we identified modest DNA methylation changes in CpGs associated with PRIM2 and TATDN1 (FDR < 0.1, Δß > 0.05) in response to particle-depleted diesel exhaust in bronchoalveolar lavage. Finally, we captured a DNA methylation signature associated with COPD diagnosis in a gene involved in nicotine dependence (COMT) (FDR < 0.1, Δß > 0.05). CONCLUSION: Our findings on sex differences might be of clinical relevance given that they revealed molecular associations of sex-biased differences in COVID-19. Specifically, our results hinted at a potentially exaggerated immune response in males linked to autosomal genes, such as NLRP2. In contrast, our findings at X-linked loci such as ACE2 suggested a potentially distinct DNA methylation pattern in females that may interact with its mRNA expression and inactivation status. We also found tissue-specific DNA methylation differences in response to particulate exposure potentially capturing a nitrogen dioxide (NO2) effect-a contributor to COVID-19 susceptibility. While we identified a molecular signature associated with COPD, all COPD-affected individuals were smokers, which may either reflect an association with the disease, smoking, or may highlight a compounded effect of these two risk factors in COVID-19. Overall, our findings point towards a molecular basis of variation in susceptibility factors that may partly explain disparities in the risk for SARS-CoV-2 infection.


Asunto(s)
COVID-19/genética , Metilación de ADN , Expresión Génica , SARS-CoV-2 , Caracteres Sexuales , Proteínas Adaptadoras Transductoras de Señales/genética , Adolescente , Adulto , Contaminantes Atmosféricos/efectos adversos , Enzima Convertidora de Angiotensina 2/genética , Proteínas Reguladoras de la Apoptosis/genética , COVID-19/virología , Niño , Preescolar , Cromosomas Humanos X , Proteínas Co-Represoras/genética , Femenino , Genes Ligados a X , Glutatión Peroxidasa/genética , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Factores de Riesgo , Fumar/efectos adversos , Sulfotransferasas/genética , Adulto Joven , Arrestina beta 2/genética , Glutatión Peroxidasa GPX1
10.
Thorax ; 76(5): 448-455, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443234

RESUMEN

INTRODUCTION: People living with HIV (PLWH) suffer from age-related comorbidities such as COPD. The processes responsible for reduced lung function in PLWH are largely unknown. We performed an epigenome-wide association study to investigate whether blood DNA methylation is associated with impaired lung function in PLWH. METHODS: Using blood DNA methylation profiles from 161 PLWH, we tested the effect of methylation on FEV1, FEV1/FVC ratio and FEV1 decline over a median of 5 years. We evaluated the global methylation of PLWH with airflow obstruction by testing the differential methylation of transposable elements Alu and LINE-1, a well-described marker of epigenetic ageing. RESULTS: Airflow obstruction as defined by a FEV1/FVC<0.70 was associated with 1393 differentially methylated positions (DMPs), while 4676 were associated with airflow obstruction based on the FEV1/FVC

Asunto(s)
Metilación de ADN , Infecciones por VIH/genética , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Adulto , Femenino , Infecciones por VIH/tratamiento farmacológico , Humanos , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/virología , Pruebas de Función Respiratoria
11.
J Infect Dis ; 223(10): 1681-1689, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32959881

RESUMEN

BACKGROUND: Whether accelerated aging develops over the course of chronic human immunodeficiency virus (HIV) infection or can be observed before significant immunosuppression on is unknown. We studied DNA methylation in blood to estimate cellular aging in persons living with HIV (PLWH) before the initiation of antiretroviral therapy (ART). METHODS: A total of 378 ART-naive PLWH who had CD4 T-cell counts >500/µL and were enrolled in the Strategic Timing of Antiretroviral Therapy trial (Pulmonary Substudy) were compared with 34 HIV-negative controls. DNA methylation was performed using the Illumina MethylationEPIC BeadChip. Differentially methylated positions (DMPs) and differentially methylated regions (DMRs) in PLWH compared with controls were identified using a robust linear model. Methylation age was calculated using a previously described epigenetic clock. RESULTS: There were a total of 56 639 DMPs and 6103 DMRs at a false discovery rate of <0.1. The top 5 DMPs corresponded to genes NLRC5, VRK2, B2M, and GPR6 and were highly enriched for cancer-related pathways. PLWH had significantly higher methylation age than HIV-negative controls (P = .001), with black race, low CD4 and high CD8 T-cell counts, and duration of HIV being risk factors for age acceleration. CONCLUSIONS: PLWH before the initiation of ART and with preserved immune status show evidence of advanced methylation aging.


Asunto(s)
Envejecimiento/genética , Metilación de ADN , Epigénesis Genética , Infecciones por VIH , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Humanos
12.
Epigenetics ; 16(2): 177-185, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32657253

RESUMEN

Air pollution is associated with early declines in lung function and increased levels of asthma-related cysteinyl leukotrienes (CysLT) but a biological pathway linking this rapid response has not been delineated. In this randomized controlled diesel exhaust (DE) challenge study of 16 adult asthmatics, increased exposure-attributable urinary leukotriene E4 (uLTE4, a biomarker of cysteinyl leukotriene production) was correlated (p = 0.04) with declines in forced expiratory volume in 1-second (FEV1) within 6 hours of exposure. Exposure-attributable uLTE4 increases were correlated (p = 0.02) with increased CysLT receptor 1 (CysLTR1) methylation in peripheral blood mononuclear cells which, in turn, was marginally correlated (p = 0.06) with decreased CysLTR1 expression. Decreased CysLTR1 expression was, in turn, correlated (p = 0.0007) with FEV1 declines. During the same time period, increased methylation of GPR17 (a negative regulator of CysLTR1) was observed after DE exposure (p = 0.02); this methylation increase was correlated (p = 0.001) with decreased CysLTR1 methylation which, in turn, was marginally correlated (p = 0.06) with increased CysLTR1 expression; increased CysLTR1 expression was correlated (p = 0.0007) with FEV1 increases. Collectively, these data delineate a potential mechanistic pathway linking increased DE exposure-attributable CysLT levels to lung function declines through changes in CysLTR1-related methylation and gene expression.


Asunto(s)
Contaminación del Aire , Asma , Metilación de ADN , Receptores de Leucotrienos/genética , Asma/genética , Humanos , Leucocitos Mononucleares , Pulmón , Receptores Acoplados a Proteínas G
13.
Transl Psychiatry ; 9(1): 245, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31582756

RESUMEN

The stress response system is disrupted in individuals with major depressive disorder (MDD) as well as in those at elevated risk for developing MDD. We examined whether DNA methylation (DNAm) levels of CpG sites within HPA-axis genes predict the onset of MDD. Seventy-seven girls, approximately half (n = 37) of whom were at familial risk for MDD, were followed longitudinally. Saliva samples were taken in adolescence (M age = 13.06 years [SD = 1.52]) when participants had no current or past MDD diagnosis. Diagnostic interviews were administered approximately every 18 months until the first onset of MDD or early adulthood (M age of last follow-up = 19.23 years [SD = 2.69]). We quantified DNAm in saliva samples using the Illumina EPIC chip and examined CpG sites within six key HPA-axis genes (NR3C1, NR3C2, CRH, CRHR1, CRHR2, FKBP5) alongside 59 genotypes for tagging SNPs capturing cis genetic variability. DNAm levels within CpG sites in NR3C1, CRH, CRHR1, and CRHR2 were associated with risk for MDD across adolescence and young adulthood. To rule out the possibility that findings were merely due to the contribution of genetic variability, we re-analyzed the data controlling for cis genetic variation within these candidate genes. Importantly, methylation levels in these CpG sites continued to significantly predict the onset of MDD, suggesting that variation in the epigenome, independent of proximal genetic variants, prospectively predicts the onset of MDD. These findings suggest that variation in the HPA axis at the level of the methylome may predict the development of MDD.


Asunto(s)
Metilación de ADN , Trastorno Depresivo Mayor/genética , Polimorfismo de Nucleótido Simple , Adolescente , Islas de CpG , Epigénesis Genética , Femenino , Genotipo , Humanos , Sistema Hipotálamo-Hipofisario/fisiopatología , Sistema Hipófiso-Suprarrenal/fisiopatología , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Receptores de Hormona Liberadora de Corticotropina/genética , Receptores de Glucocorticoides/genética
15.
Nat Commun ; 10(1): 2548, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186427

RESUMEN

Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike's information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease risk.


Asunto(s)
Metilación de ADN/genética , ADN/sangre , Interacción Gen-Ambiente , Estudios de Cohortes , Epigénesis Genética , Femenino , Sangre Fetal , Genotipo , Humanos , Recién Nacido , Masculino , Embarazo , Factores de Riesgo
16.
EBioMedicine ; 42: 188-202, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30922963

RESUMEN

BACKGROUND: Activation of brain insulin receptors modulates reward sensitivity, inhibitory control and memory. Variations in the functioning of this mechanism likely associate with individual differences in the risk for related mental disorders (attention deficit hyperactivity disorder or ADHD, addiction, dementia), in agreement with the high co-morbidity between insulin resistance and psychopathology. These neurobiological mechanisms can be explored using genetic studies. We propose a novel, biologically informed genetic score reflecting the mesocorticolimbic and hippocampal insulin receptor-related gene networks, and investigate if it predicts endophenotypes (impulsivity, cognitive ability) in community samples of children, and psychopathology (addiction, dementia) in adults. METHODS: Lists of genes co-expressed with the insulin receptor in the mesocorticolimbic system or hippocampus were created. SNPs from these genes (post-clumping) were compiled in a polygenic score using the association betas described in a conventional GWAS (ADHD in the mesocorticolimbic score and Alzheimer in the hippocampal score). Across multiple samples (n = 4502), the biologically informed, mesocorticolimbic or hippocampal specific insulin receptor polygenic scores were calculated, and their ability to predict impulsivity, risk for addiction, cognitive performance and presence of Alzheimer's disease was investigated. FINDINGS: The biologically-informed ePRS-IR score showed better prediction of child impulsivity and cognitive performance, as well as risk for addiction and Alzheimer's disease in comparison to conventional polygenic scores for ADHD, addiction and dementia. INTERPRETATION: This novel, biologically-informed approach enables the use of genomic datasets to probe relevant biological processes involved in neural function and disorders. FUND: Toxic Stress Research network of the JPB Foundation, Jacobs Foundation (Switzerland), Sackler Foundation.


Asunto(s)
Encéfalo/metabolismo , Endofenotipos , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Receptor de Insulina/genética , Encéfalo/fisiopatología , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Hipocampo/metabolismo , Hipocampo/fisiopatología , Humanos , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Receptor de Insulina/metabolismo , Reproducibilidad de los Resultados
17.
Epigenetics ; 13(6): 655-664, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30044683

RESUMEN

Analysis of DNA methylation helps to understand the effects of environmental exposures as well as the role of epigenetics in human health. Illumina, Inc. recently replaced the HumanMethylation450 BeadChip (450K) with the EPIC BeadChip, which nearly doubles the measured CpG sites to >850,000. Although the new chip uses the same underlying technology, it is important to establish if data between the two platforms are comparable within cohorts and for meta-analyses. DNA methylation was assessed by 450K and EPIC using whole blood from newborn (n = 109) and 14-year-old (n = 86) participants of the Center for the Health Assessment of Mothers and Children of Salinas. The overall per-sample correlations were very high (r >0.99), although many individual CpG sites, especially those with low variance of methylation, had lower correlations (median r = 0.24). There was also a small subset of CpGs with large mean methylation ß-value differences between platforms, in both the newborn and 14-year datasets. However, estimates of cell type proportion prediction by 450K and EPIC were highly correlated at both ages. Finally, differentially methylated positions between boys and girls replicated very well by both platforms in newborns and older children. These findings are encouraging for application of combined data from EPIC and 450K platforms for birth cohorts and other population studies. These data in children corroborate recent comparisons of the two BeadChips in adults and in cancer cell lines. However, researchers should be cautious when characterizing individual CpG sites and consider independent methods for validation of significant hits.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Exposición Materna/efectos adversos , Plaguicidas/efectos adversos , Adolescente , Adulto , California , Femenino , Humanos , Recién Nacido , Masculino , Embarazo
18.
Aging (Albany NY) ; 9(3): 687-705, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28237978

RESUMEN

Persons living with human immunodeficiency virus (HIV) harbor an increased risk of age-related conditions. We measured changes in telomere length and DNA methylation in the peripheral blood of 31 intravenous drug users, who were followed longitudinally with blood samples pre-HIV (T1), immediately post-HIV (T2; 1.9±1 year from T1), and at a later follow-up time (T3; 2.2±1 year from T2). Absolute telomere length measurements were performed using polymerase chain reaction methods. Methylation profiles were obtained using the Illumina Human Methylation450 platform. Methylation aging was assessed using the Horvath method. Telomere length significantly decreased between T1 and T2 (227±46 at T1 vs. 201±48 kbp/genome at T2, p=0.045), while no differences were observed between T2 and T3 (201±48 at T2 vs. 186±27 kbp/genome at T3, p=0.244). Methylation aging as measured by the age acceleration residual increased over the time course of HIV infection (p=0.035). CpG sites corresponding to PCBP2 and CSRNP1 were differentially methylated between T1 and T2 at a q-value <0.05. Telomere shortening and methylation changes can therefore be observed in the short-term period immediately following HIV seroconversion. Further studies to confirm these results in larger sample sizes and to compare these results to non-HIV and non-injection drug users are warranted.


Asunto(s)
Envejecimiento/genética , Metilación de ADN , Seroconversión/genética , Acortamiento del Telómero , Adulto , Proteínas Reguladoras de la Apoptosis/genética , Islas de CpG , Femenino , Estudios de Seguimiento , Infecciones por VIH/virología , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Unión al ARN/genética , Abuso de Sustancias por Vía Intravenosa/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...