Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 13(5): e0197862, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29795644

RESUMEN

Enzymatic depolymerization of recalcitrant polysaccharides plays a key role in accessing the renewable energy stored within lignocellulosic biomass, and natural biodiversities may be explored to discover microbial enzymes that have evolved to conquer this task in various environments. Here, a metagenome from a thermophilic microbial community was mined to yield a novel, thermostable cellulase, named mgCel6A, with activity on an industrial cellulosic substrate (sulfite-pulped Norway spruce) and a glucomannanase side activity. The enzyme consists of a glycoside hydrolase family 6 catalytic domain (GH6) and a family 2 carbohydrate binding module (CBM2) that are connected by a linker rich in prolines and threonines. MgCel6A exhibited maximum activity at 85°C and pH 5.0 on carboxymethyl cellulose (CMC), but in prolonged incubations with the industrial substrate, the highest yields were obtained at 60°C, pH 6.0. Differential scanning calorimetry (DSC) indicated a Tm(app) of 76°C. Both functional data and the crystal structure, solved at 1.88 Å resolution, indicate that mgCel6A is an endoglucanase. Comparative studies with a truncated variant of the enzyme showed that the CBM increases substrate binding, while not affecting thermal stability. Importantly, at higher substrate concentrations the full-length enzyme was outperformed by the catalytic domain alone, underpinning previous suggestions that CBMs may be less useful in high-consistency bioprocessing.


Asunto(s)
Celulasa/química , Celulasa/metabolismo , Celulosa/metabolismo , Compostaje , Metagenoma , Secuencia de Aminoácidos , Dominio Catalítico , Celulasa/genética , Clonación Molecular , Cristalografía por Rayos X , Estabilidad de Enzimas , Hidrólisis , Cinética , Conformación Proteica , Homología de Secuencia , Especificidad por Sustrato , Temperatura
2.
Proc Natl Acad Sci U S A ; 111(23): 8446-51, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24912171

RESUMEN

For decades, the enzymatic conversion of cellulose was thought to rely on the synergistic action of hydrolytic enzymes, but recent work has shown that lytic polysaccharide monooxygenases (LPMOs) are important contributors to this process. We describe the structural and functional characterization of two functionally coupled cellulose-active LPMOs belonging to auxiliary activity family 10 (AA10) that commonly occur in cellulolytic bacteria. One of these LPMOs cleaves glycosidic bonds by oxidation of the C1 carbon, whereas the other can oxidize both C1 and C4. We thus demonstrate that C4 oxidation is not confined to fungal AA9-type LPMOs. X-ray crystallographic structures were obtained for the enzyme pair from Streptomyces coelicolor, solved at 1.3 Å (ScLPMO10B) and 1.5 Å (CelS2 or ScLPMO10C) resolution. Structural comparisons revealed differences in active site architecture that could relate to the ability to oxidize C4 (and that also seem to apply to AA9-type LPMOs). Despite variation in active site architecture, the two enzymes exhibited similar affinities for Cu(2+) (12-31 nM), redox potentials (242 and 251 mV), and electron paramagnetic resonance spectra, with only the latter clearly different from those of chitin-active AA10-type LPMOs. We conclude that substrate specificity depends not on copper site architecture, but rather on variation in substrate binding and orientation. During cellulose degradation, the members of this LPMO pair act in synergy, indicating different functional roles and providing a rationale for the abundance of these enzymes in biomass-degrading organisms.


Asunto(s)
Proteínas Bacterianas/metabolismo , Celulosa/metabolismo , Oxigenasas de Función Mixta/metabolismo , Polisacáridos/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Quitina/metabolismo , Cobre/metabolismo , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Zinc/metabolismo
3.
PLoS One ; 7(6): e38571, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22701672

RESUMEN

Lignocellulosic biomass remains a largely untapped source of renewable energy predominantly due to its recalcitrance and an incomplete understanding of how this is overcome in nature. We present here a compositional and comparative analysis of metagenomic data pertaining to a natural biomass-converting ecosystem adapted to austere arctic nutritional conditions, namely the rumen microbiome of Svalbard reindeer (Rangifer tarandus platyrhynchus). Community analysis showed that deeply-branched cellulolytic lineages affiliated to the Bacteroidetes and Firmicutes are dominant, whilst sequence binning methods facilitated the assemblage of metagenomic sequence for a dominant and novel Bacteroidales clade (SRM-1). Analysis of unassembled metagenomic sequence as well as metabolic reconstruction of SRM-1 revealed the presence of multiple polysaccharide utilization loci-like systems (PULs) as well as members of more than 20 glycoside hydrolase and other carbohydrate-active enzyme families targeting various polysaccharides including cellulose, xylan and pectin. Functional screening of cloned metagenome fragments revealed high cellulolytic activity and an abundance of PULs that are rich in endoglucanases (GH5) but devoid of other common enzymes thought to be involved in cellulose degradation. Combining these results with known and partly re-evaluated metagenomic data strongly indicates that much like the human distal gut, the digestive system of herbivores harbours high numbers of deeply branched and as-yet uncultured members of the Bacteroidetes that depend on PUL-like systems for plant biomass degradation.


Asunto(s)
Bacteroidetes/genética , Bacterias Grampositivas/genética , Metagenoma/genética , Filogenia , Reno/microbiología , Rumen/microbiología , Animales , Regiones Árticas , Secuencia de Bases , Celulosa/metabolismo , Clonación Molecular , Cartilla de ADN/genética , Femenino , Sitios Genéticos/genética , Bacterias Grampositivas/metabolismo , Funciones de Verosimilitud , Metagenómica/métodos , Modelos Genéticos , Datos de Secuencia Molecular , Noruega , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
4.
J Mol Biol ; 396(2): 332-44, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-19941870

RESUMEN

Clavulanic acid (CA) is a clinically important beta-lactamase inhibitor that is produced by fermentation of Streptomyces clavuligerus. The CA biosynthesis pathway starts from arginine and glyceraldehyde-3-phosphate and proceeds via (3S,5S)-clavaminic acid, which is converted to (3R,5R)-clavaldehyde, the immediate precursor of (3R,5R)-CA. Open reading frames 7 (orf7) and 15 (orf15) of the CA biosynthesis cluster encode oligopeptide-binding proteins (OppA1 and OppA2), which are essential for CA biosynthesis. OppA1/2 are proposed to be involved in the binding and/or transport of peptides across the S. clavuligerus cell membrane. Peptide binding assays reveal that recombinant OppA1 and OppA2 bind di-/tripeptides containing arginine and certain nonapeptides including bradykinin. Crystal structures of OppA2 in its apo form and in complex with arginine or bradykinin were solved to 1.45, 1.7, and 1.7 A resolution, respectively. The overall fold of OppA2 consists of two lobes with a deep cavity in the center, as observed for other oligopeptide-binding proteins. The large cavity creates a peptide/arginine binding cleft. The crystal structures of OppA2 in complex with arginine or bradykinin reveal that the C-terminal arginine of bradykinin binds similarly to arginine. The results are discussed in terms of the possible roles of OppA1/2 in CA biosynthesis.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Portadoras/química , Ácido Clavulánico/biosíntesis , Lipoproteínas/química , Inhibidores de beta-Lactamasas , Arginina/química , Arginina/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Lipoproteínas/metabolismo , Redes y Vías Metabólicas/fisiología , Modelos Moleculares , Unión Proteica , Conformación Proteica , Streptomyces/enzimología , Streptomyces/metabolismo
5.
Biochemistry ; 46(6): 1523-33, 2007 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-17279617

RESUMEN

The ultimate step in the biosynthesis of the medicinally important beta-lactamase inhibitor clavulanic acid is catalyzed by clavulanic acid dehydrogenase (CAD). CAD is responsible for the NAPDH-dependent reduction of the unstable intermediate clavulanate-9-aldehyde to yield clavulanic acid. Here, we report biochemical and structural studies on CAD. Biophysical analyses demonstrate that CAD exists as dimeric and tetrameric species in solution. The reaction performed by CAD was shown to be reversible, allowing the use of clavulanic acid for activity analyses. The crystal structure of CAD was solved using single-wavelength anomalous diffraction with a seleno-methionine derivative. The structure reveals that the individual monomers comprise a single domain possessing the Rossmann fold, characteristic of dinucleotide-binding enzymes. The monomers are arranged as tetramers, similar to other tetrameric members of the short-chain dehydrogenase/reductase family. The structure of the unreactive complex of CAD with clavulanic acid and NADPH suggests how CAD is able to catalyze the reduction of clavulanate-9-aldehyde without fragmentation of the bicyclic beta-lactam ring structure. The relative positions of NADPH and clavulanic acid, in the active site, together with the presence of the latter in an eclipsed conformation, rationalizes previous labeling studies demonstrating that the incorporation of the C5 pro-R, but not pro-S, hydrogen of ornithine/arginine into the C9 position of clavulanic acid occurs with overall inversion of configuration.


Asunto(s)
Oxidorreductasas de Alcohol/química , Ácido Clavulánico/biosíntesis , Sitios de Unión , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Escherichia coli/metabolismo , Modelos Moleculares , Estructura Cuaternaria de Proteína , Espectrometría de Masa por Ionización de Electrospray , Streptomyces/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...