Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34830235

RESUMEN

Patients with Hirschsprung disease (HSCR) do not always receive a genetic diagnosis after routine screening in clinical practice. One of the reasons for this could be that the causal mutation is not present in the cell types that are usually tested-whole blood, dermal fibroblasts or saliva-but is only in the affected tissue. Such mutations are called somatic, and can occur in a given cell at any stage of development after conception. They will then be present in all subsequent daughter cells. Here, we investigated the presence of somatic mutations in HSCR patients. For this, whole-exome sequencing and copy number analysis were performed in DNA isolated from purified enteric neural crest cells (ENCCs) and blood or fibroblasts of the same patient. Variants identified were subsequently validated by Sanger sequencing. Several somatic variants were identified in all patients, but causative mutations for HSCR were not specifically identified in the ENCCs of these patients. Larger copy number variants were also not found to be specific to ENCCs. Therefore, we believe that somatic mutations are unlikely to be identified, if causative for HSCR. Here, we postulate various modes of development following the occurrence of a somatic mutation, to describe the challenges in detecting such mutations, and hypothesize how somatic mutations may contribute to 'missing heritability' in developmental defects.


Asunto(s)
Variaciones en el Número de Copia de ADN , Sistema Nervioso Entérico/metabolismo , Enfermedad de Hirschsprung/genética , Mutación , Cresta Neural/metabolismo , Niño , Preescolar , Sistema Nervioso Entérico/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Enfermedad de Hirschsprung/diagnóstico , Enfermedad de Hirschsprung/patología , Humanos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Masculino , Cresta Neural/patología , Análisis de Secuencia de ADN
2.
PLoS Genet ; 17(8): e1009698, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34358225

RESUMEN

Hirschsprung disease (HSCR) is a complex genetic disease characterized by absence of ganglia in the intestine. HSCR etiology can be explained by a unique combination of genetic alterations: rare coding variants, predisposing haplotypes and Copy Number Variation (CNV). Approximately 18% of patients have additional anatomical malformations or neurological symptoms (HSCR-AAM). Pinpointing the responsible culprits within a CNV is challenging as often many genes are affected. Therefore, we selected candidate genes based on gene enrichment strategies using mouse enteric nervous system transcriptomes and constraint metrics. Next, we used a zebrafish model to investigate whether loss of these genes affects enteric neuron development in vivo. This study included three groups of patients, two groups without coding variants in disease associated genes: HSCR-AAM and HSCR patients without associated anomalies (HSCR-isolated). The third group consisted of all HSCR patients in which a confirmed pathogenic rare coding variant was identified. We compared these patient groups to unaffected controls. Predisposing haplotypes were determined, confirming that every HSCR subgroup had increased contributions of predisposing haplotypes, but their contribution was highest in isolated HSCR patients without RET coding variants. CNV profiling proved that specifically HSCR-AAM patients had larger Copy Number (CN) losses. Gene enrichment strategies using mouse enteric nervous system transcriptomes and constraint metrics were used to determine plausible candidate genes located within CN losses. Validation in zebrafish using CRISPR/Cas9 targeting confirmed the contribution of UFD1L, TBX2, SLC8A1, and MAPK8 to ENS development. In addition, we revealed epistasis between reduced Ret and Gnl1 expression and between reduced Ret and Tubb5 expression in vivo. Rare large CN losses-often de novo-contribute to HSCR in HSCR-AAM patients. We proved the involvement of six genes in enteric nervous system development and Hirschsprung disease.


Asunto(s)
Variaciones en el Número de Copia de ADN , Sistema Nervioso Entérico/crecimiento & desarrollo , Redes Reguladoras de Genes , Enfermedad de Hirschsprung/genética , Animales , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Sistema Nervioso Entérico/química , Epistasis Genética , Predisposición Genética a la Enfermedad , Haplotipos , Humanos , Ratones , Pez Cebra
3.
Hum Mutat ; 41(11): 1906-1917, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32939943

RESUMEN

Goldberg-Shprintzen syndrome (GOSHS) is caused by loss of function variants in the kinesin binding protein gene (KIFBP). However, the phenotypic range of this syndrome is wide, indicating that other factors may play a role. To date, 37 patients with GOSHS have been reported. Here, we document nine new patients with variants in KIFBP: seven with nonsense variants and two with missense variants. To our knowledge, this is the first time that missense variants have been reported in GOSHS. We functionally investigated the effect of the variants identified, in an attempt to find a genotype-phenotype correlation. We also determined whether common Hirschsprung disease (HSCR)-associated single nucleotide polymorphisms (SNPs), could explain the presence of HSCR in GOSHS. Our results showed that the missense variants led to reduced expression of KIFBP, while the truncating variants resulted in lack of protein. However, no correlation was found between the severity of GOSHS and the location of the variants. We were also unable to find a correlation between common HSCR-associated SNPs, and HSCR development in GOSHS. In conclusion, we show that reduced, as well as lack of KIFBP expression can lead to GOSHS, and our results suggest that a threshold expression of KIFBP may modulate phenotypic variability of the disease.


Asunto(s)
Anomalías Craneofaciales/genética , Enfermedad de Hirschsprung/genética , Proteínas del Tejido Nervioso/genética , Adulto , Niño , Codón sin Sentido , Femenino , Estudios de Asociación Genética , Células HEK293 , Humanos , Masculino , Mutación Missense , Polimorfismo de Nucleótido Simple
5.
Dev Biol ; 416(1): 255-265, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27266404

RESUMEN

The enteric nervous system (ENS) is required for peristalsis of the gut and is derived from Enteric Neural Crest Cells (ENCCs). During ENS development, the RET receptor tyrosine kinase plays a critical role in the proliferation and survival of ENCCs, their migration along the developing gut, and differentiation into enteric neurons. Mutations in RET and its ligand GDNF cause Hirschsprung disease (HSCR), a complex genetic disorder in which ENCCs fail to colonize variable lengths of the distal bowel. To identify key regulators of ENCCs and the pathways underlying RET signaling, gene expression profiles of untreated and GDNF-treated ENCCs from E14.5 mouse embryos were generated. ENCCs express genes that are involved in both early and late neuronal development, whereas GDNF treatment induced neuronal maturation. Predicted regulators of gene expression in ENCCs include the known HSCR genes Ret and Sox10, as well as Bdnf, App and Mapk10. The regulatory overlap and functional interactions between these genes were used to construct a regulatory network that is underlying ENS development and connects to known HSCR genes. In addition, the adenosine receptor A2a (Adora2a) and neuropeptide Y receptor Y2 (Npy2r) were identified as possible regulators of terminal neuronal differentiation in GDNF-treated ENCCs. The human orthologue of Npy2r maps to the HSCR susceptibility locus 4q31.3-q32.3, suggesting a role for NPY2R both in ENS development and in HSCR.


Asunto(s)
Sistema Nervioso Entérico/embriología , Regulación del Desarrollo de la Expresión Génica , Enfermedad de Hirschsprung/embriología , Enfermedad de Hirschsprung/genética , Cresta Neural/embriología , Animales , Antígenos de Diferenciación , Separación Celular , Femenino , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-ret/metabolismo , Transducción de Señal , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA