Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Mol Genet ; 26(17): 3327-3341, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28595361

RESUMEN

Mitochondrial dysfunction is a common feature of many genetic disorders that target the brain and cognition. However, the exact role these organelles play in the etiology of such disorders is not understood. Here, we show that mitochondrial dysfunction impairs brain development, depletes the adult neural stem cell (NSC) pool and impacts embryonic and adult neurogenesis. Using deletion of the mitochondrial oxidoreductase AIF as a genetic model of mitochondrial and neurodegenerative diseases revealed the importance of mitochondria in multiple steps of the neurogenic process. Developmentally, impaired mitochondrial function causes defects in NSC self-renewal, neural progenitor cell proliferation and cell cycle exit, as well as neuronal differentiation. Sustained mitochondrial dysfunction into adulthood leads to NSC depletion, loss of adult neurogenesis and manifests as a decline in brain function and cognitive impairment. These data demonstrate that mitochondrial dysfunction, as observed in genetic mitochondrial and neurodegenerative diseases, underlies the decline of brain function and cognition due to impaired stem cell maintenance and neurogenesis.


Asunto(s)
Mitocondrias/metabolismo , Mitocondrias/fisiología , Células-Madre Neurales/metabolismo , Animales , Factor Inductor de la Apoptosis/metabolismo , Encéfalo/metabolismo , Diferenciación Celular , Proliferación Celular , Cognición , Disfunción Cognitiva/metabolismo , Humanos , Ratones , Ratones Transgénicos , Enfermedades Neurodegenerativas/metabolismo , Neurogénesis/genética , Neurogénesis/fisiología , Neuronas/metabolismo , Transducción de Señal
2.
Cell Stem Cell ; 19(2): 232-247, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27237737

RESUMEN

Regulated mechanisms of stem cell maintenance are key to preventing stem cell depletion and aging. While mitochondrial morphology plays a fundamental role in tissue development and homeostasis, its role in stem cells remains unknown. Here, we uncover that mitochondrial dynamics regulates stem cell identity, self-renewal, and fate decisions by orchestrating a transcriptional program. Manipulation of mitochondrial structure, through OPA1 or MFN1/2 deletion, impaired neural stem cell (NSC) self-renewal, with consequent age-dependent depletion, neurogenesis defects, and cognitive impairments. Gene expression profiling revealed ectopic expression of the Notch self-renewal inhibitor Botch and premature induction of transcription factors that promote differentiation. Changes in mitochondrial dynamics regulate stem cell fate decisions by driving a physiological reactive oxygen species (ROS)-mediated process, which triggers a dual program to suppress self-renewal and promote differentiation via NRF2-mediated retrograde signaling. These findings reveal mitochondrial dynamics as an upstream regulator of essential mechanisms governing stem cell self-renewal and fate decisions through transcriptional programming.


Asunto(s)
Linaje de la Célula , Núcleo Celular/genética , Dinámicas Mitocondriales , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Transcripción Genética , Adenosina Trifosfato/farmacología , Animales , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Núcleo Celular/efectos de los fármacos , Autorrenovación de las Células/efectos de los fármacos , Cognición/efectos de los fármacos , GTP Fosfohidrolasas/metabolismo , Eliminación de Gen , Metabolómica , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Células-Madre Neurales/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
3.
EMBO J ; 33(22): 2676-91, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25298396

RESUMEN

Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which these dynamic changes are regulated and the consequences thereof are largely unknown. Optic atrophy 1 (OPA1) is the mitochondrial GTPase responsible for inner membrane fusion and maintenance of cristae structure. Here, we report that OPA1 responds dynamically to changes in energetic conditions to regulate cristae structure. This cristae regulation is independent of OPA1's role in mitochondrial fusion, since an OPA1 mutant that can still oligomerize but has no fusion activity was able to maintain cristae structure. Importantly, OPA1 was required for resistance to starvation-induced cell death, for mitochondrial respiration, for growth in galactose media and for maintenance of ATP synthase assembly, independently of its fusion activity. We identified mitochondrial solute carriers (SLC25A) as OPA1 interactors and show that their pharmacological and genetic blockade inhibited OPA1 oligomerization and function. Thus, we propose a novel way in which OPA1 senses energy substrate availability, which modulates its function in the regulation of mitochondrial architecture in a SLC25A protein-dependent manner.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Mitocondrias/enzimología , Dinámicas Mitocondriales/fisiología , Membranas Mitocondriales/enzimología , Proteínas Mitocondriales/metabolismo , Animales , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , GTP Fosfohidrolasas/genética , Células HeLa , Humanos , Ratones , Mitocondrias/ultraestructura , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/genética , Consumo de Oxígeno/fisiología , Multimerización de Proteína/fisiología
4.
Nat Commun ; 5: 3550, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24686499

RESUMEN

Sustained cellular function and viability of high-energy demanding post-mitotic cells rely on the continuous supply of ATP. The utilization of mitochondrial oxidative phosphorylation for efficient ATP generation is a function of oxygen levels. As such, oxygen deprivation, in physiological or pathological settings, has profound effects on cell metabolism and survival. Here we show that mild extracellular acidosis, a physiological consequence of anaerobic metabolism, can reprogramme the mitochondrial metabolic pathway to preserve efficient ATP production regardless of oxygen levels. Acidosis initiates a rapid and reversible homeostatic programme that restructures mitochondria, by regulating mitochondrial dynamics and cristae architecture, to reconfigure mitochondrial efficiency, maintain mitochondrial function and cell survival. Preventing mitochondrial remodelling results in mitochondrial dysfunction, fragmentation and cell death. Our findings challenge the notion that oxygen availability is a key limiting factor in oxidative metabolism and brings forth the concept that mitochondrial morphology can dictate the bioenergetic status of post-mitotic cells.


Asunto(s)
Acidosis/metabolismo , Acidosis/fisiopatología , Mitocondrias/metabolismo , Oxígeno/metabolismo , Acidosis/genética , Adenosina Trifosfato/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular , Femenino , Humanos , Masculino , Redes y Vías Metabólicas , Ratones , Mitosis , Fosforilación Oxidativa
5.
J Biol Chem ; 286(6): 4772-82, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21041314

RESUMEN

Mitochondrial dynamics have been extensively studied in the context of classical cell death models involving Bax-mediated cytochrome c release. Excitotoxic neuronal loss is a non-classical death signaling pathway that occurs following overactivation of glutamate receptors independent of Bax activation. Presently, the role of mitochondrial dynamics in the regulation of excitotoxicity remains largely unknown. Here, we report that NMDA-induced excitotoxicity results in defects in mitochondrial morphology as evident by the presence of excessive fragmented mitochondria, cessation of mitochondrial fusion, and cristae dilation. Up-regulation of the mitochondrial inner membrane GTPase, Opa1, is able to restore mitochondrial morphology and protect neurons against excitotoxic injury. Opa1 functions downstream of the calcium-dependent protease, calpain. Inhibition of calpain activity by calpastatin, an endogenous calpain inhibitor, significantly rescued mitochondrial defects and maintained neuronal survival. Opa1 was required for calpastatin-mediated neuroprotection because the enhanced survival found following NMDA-induced toxicity was significantly reduced upon loss of Opa1. Our results define a mechanism whereby breakdown of the mitochondrial network mediated through loss of Opa1 function contributes to neuronal death following excitotoxic neuronal injury. These studies suggest Opa1 as a potential therapeutic target to promote neuronal survival following acute brain damage and neurodegenerative diseases.


Asunto(s)
Cerebelo/metabolismo , GTP Fosfohidrolasas/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Animales , Lesiones Encefálicas/genética , Lesiones Encefálicas/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Cerebelo/citología , Citotoxinas/efectos adversos , Citotoxinas/farmacología , Agonistas de Aminoácidos Excitadores/efectos adversos , Agonistas de Aminoácidos Excitadores/farmacología , GTP Fosfohidrolasas/genética , Ratones , Proteínas Mitocondriales/genética , N-Metilaspartato/efectos adversos , N-Metilaspartato/farmacología , Proteínas del Tejido Nervioso/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Neuronas/citología
6.
J Biol Chem ; 282(33): 23788-98, 2007 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-17537722

RESUMEN

Of the GTPases involved in the regulation of the fusion machinery, mitofusin 2 (Mfn2) plays an important role in the nervous system as point mutations of this isoform are associated with Charcot Marie Tooth neuropathy. Here, we investigate whether Mfn2 plays a role in the regulation of neuronal injury. We first examine mitochondrial dynamics following different modes of injury in cerebellar granule neurons. We demonstrate that neurons exposed to DNA damage or oxidative stress exhibit extensive mitochondrial fission, an early event preceding neuronal loss. The extent of mitochondrial fragmentation and remodeling is variable and depends on the mode and the severity of the death stimuli. Interestingly, whereas mitofusin 2 loss of function significantly induces cell death in the absence of any cell death stimuli, expression of mitofusin 2 prevents cell death following DNA damage, oxidative stress, and K+ deprivation induced apoptosis. More importantly, whereas wild-type Mfn2 and the hydrolysis-deficient mutant of Mfn2 (Mfn2(RasG12V)) function equally to promote fusion and lengthening of mitochondria, the activated Mfn2(RasG12V) mutant shows a significant increase in the protection of neurons against cell death and release of proapoptotic factor cytochrome c. These findings highlight a signaling role for Mfn2 in the regulation of apoptosis that extends beyond its role in mitochondrial fusion.


Asunto(s)
Cerebelo/citología , Proteínas de la Membrana/fisiología , Mitocondrias/patología , Proteínas Mitocondriales/fisiología , Neuronas/ultraestructura , Animales , Apoptosis , Muerte Celular , Línea Celular , Enfermedad de Charcot-Marie-Tooth/etiología , Daño del ADN , GTP Fosfohidrolasas , Humanos , Fusión de Membrana , Proteínas de la Membrana/genética , Ratones , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas Mitocondriales/genética , Neuronas/citología , Estrés Oxidativo , Transfección
7.
J Cell Biol ; 178(1): 129-39, 2007 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-17591923

RESUMEN

The Retinoblastoma protein p107 regulates the neural precursor pool in both the developing and adult brain. As p107-deficient mice exhibit enhanced levels of Hes1, we questioned whether p107 regulates neural precursor self-renewal through the repression of Hes1. p107 represses transcription at the Hes1 promoter. Despite an expanded neural precursor population, p107-null mice exhibit a striking reduction in the number of cortical neurons. Hes1 deficiency rescues neurosphere numbers in p107-null embryos. We find that the loss of a single Hes1 allele in vivo restores the number of neural precursor cells at the ventricular zone. Neuronal birthdating analysis reveals a dramatic reduction in the rate of neurogenesis, demonstrating impairment in p107(-/-) progenitors to commit to a neuronal fate. The loss of a single Hes1 allele restores the number of newly generated neurons in p107-deficient brains. Together, we identify a novel function for p107 in promoting neural progenitor commitment to a neuronal fate.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Neuronas/metabolismo , Proteína p107 Similar a la del Retinoblastoma/deficiencia , Células Madre/metabolismo , Alelos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Corteza Cerebral/citología , Embrión de Mamíferos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Cinética , Ratones , Ratones Noqueados , Modelos Biológicos , Antígeno Nuclear de Célula en Proliferación/análisis , Regiones Promotoras Genéticas , Proteína p107 Similar a la del Retinoblastoma/genética , Factor de Transcripción HES-1 , Transcripción Genética
8.
EMBO J ; 25(17): 4061-73, 2006 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-16917506

RESUMEN

The mitochondrial protein apoptosis-inducing factor (AIF) translocates to the nucleus and induces apoptosis. Recent studies, however, have indicated the importance of AIF for survival in mitochondria. In the absence of a means to dissociate these two functions, the precise roles of AIF remain unclear. Here, we dissociate these dual roles using mitochondrially anchored AIF that cannot be released during apoptosis. Forebrain-specific AIF null (tel. AifDelta) mice have defective cortical development and reduced neuronal survival due to defects in mitochondrial respiration. Mitochondria in AIF deficient neurons are fragmented with aberrant cristae, indicating a novel role of AIF in controlling mitochondrial structure. While tel. AifDelta Apaf1(-/-) neurons remain sensitive to DNA damage, mitochondrially anchored AIF expression in these cells significantly enhanced survival. AIF mutants that cannot translocate into nucleus failed to induce cell death. These results indicate that the proapoptotic role of AIF can be uncoupled from its physiological function. Cell death induced by AIF is through its proapoptotic activity once it is translocated to the nucleus, not due to the loss of AIF from the mitochondria.


Asunto(s)
Factor Inductor de la Apoptosis/fisiología , Apoptosis , Mitocondrias/fisiología , Adenosina Trifosfato/metabolismo , Animales , Factor Inductor de la Apoptosis/genética , Supervivencia Celular , Células Cultivadas , Daño del ADN , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Neuronas/fisiología , Neuronas/ultraestructura , Consumo de Oxígeno , Prosencéfalo/embriología , Prosencéfalo/metabolismo , Transporte de Proteínas
9.
J Neurosci ; 24(44): 10003-12, 2004 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-15525786

RESUMEN

The p53 tumor suppressor gene has been implicated in the regulation of apoptosis in a number of different neuronal death paradigms. Because of the importance of p53 in neuronal injury, we questioned the mechanism underlying p53-mediated apoptosis in neurons. Using adenoviral-mediated gene delivery, reconstitution experiments, and mice carrying a knock-in mutation in the endogenous p53 gene, we show that the transactivation function of p53 is essential to induce neuronal cell death. Although p53 possesses two transactivation domains that can activate p53 targets independently, we demonstrate that the first activation domain (ADI) is required to drive apoptosis after neuronal injury. Furthermore, the BH3-only proteins Noxa and PUMA exhibit differential regulation by the two transactivation domains. Here, we show that Noxa can be induced by either activation domain, whereas PUMA induction requires both activation domains to be intact. Unlike Noxa, the upregulation of PUMA alone is sufficient to induce neuronal cell death. We demonstrate, therefore, that the first transactivation domain of p53 is indispensable for the induction of neuronal cell death.


Asunto(s)
Apoptosis/fisiología , Neuronas/fisiología , Proteína p53 Supresora de Tumor/fisiología , Proteínas Supresoras de Tumor/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis , Células Cultivadas , Daño del ADN/fisiología , Ratones , Ratones Noqueados , Mutación Puntual , Estructura Terciaria de Proteína , Activación Transcripcional/fisiología , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/fisiología , Regulación hacia Arriba
10.
J Biol Chem ; 279(27): 28706-14, 2004 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-15105421

RESUMEN

The p53 tumor suppressor gene is believed to play an important role in neuronal cell death in acute neurological disease and in neurodegeneration. The p53 signaling cascade is complex, and the mechanism by which p53 induces apoptosis is cell type-dependent. Using DNA microarray analysis, we have found a striking induction of the proapoptotic gene, SIVA. SIVA is a proapoptotic protein containing a death domain and interacts with members of the tumor necrosis factor receptor family as well as anti-apoptotic Bcl-2 family proteins. SIVA is induced following direct p53 gene delivery, treatment with a DNA-damaging agent camptothecin, and stroke injury in vivo. SIVA up-regulation is sufficient to initiate the apoptotic cascade in neurons. Through isolation and analysis of the SIVA promoter, we have identified response elements for both p53 and E2F1. Like p53, E2F1 is another tumor suppressor gene involved in the regulation of apoptosis, including neuronal injury models. We have identified E2F consensus sites in the promoter region, whereas p53 recognition sequences were found in intron1. Sequence analysis has shown that these consensus sites are also conserved between mouse and human SIVA genes. Electrophoretic mobility shift assays reveal that both transcription factors are capable of binding to putative consensus sites, and luciferase reporter assays reveal that E2F1 and p53 can activate transcription from the SIVA promoter. Here, we report that the proapoptotic gene, SIVA, which functions in a broad spectrum of cell types, is a direct transcriptional target for both tumor suppressors, p53 and E2F1.


Asunto(s)
Apoptosis , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Adenoviridae/genética , Animales , Proteínas Reguladoras de la Apoptosis , Secuencia de Bases , Sitios de Unión , Western Blotting , Camptotecina/farmacología , Células Cultivadas , Daño del ADN , ADN Complementario/metabolismo , Factores de Transcripción E2F , Factor de Transcripción E2F1 , Genes Reporteros , Humanos , Luciferasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Genéticos , Datos de Secuencia Molecular , Neuronas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Unión Proteica , Estructura Terciaria de Proteína , ARN/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Regulación hacia Arriba
11.
EMBO J ; 21(13): 3337-46, 2002 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12093735

RESUMEN

Correct cell cycle regulation and terminal mitosis are critical for nervous system development. The retinoblastoma (Rb) protein is a key regulator of these processes, as Rb-/- embryos die by E15.5, exhibiting gross hematopoietic and neurological defects. The extensive apoptosis in Rb-/- embryos has been attributed to aberrant S phase entry resulting in conflicting growth control signals in differentiating cells. To assess the role of Rb in cortical development in the absence of other embryonic defects, we examined mice with telencephalon-specific Rb deletions. Animals carrying a floxed Rb allele were interbred with mice in which cre was knocked into the Foxg1 locus. Unlike germline knockouts, mice specifically deleted for Rb in the developing telencephalon survived until birth. In these mutants, Rb-/- progenitor cells divided ectopically, but were able to survive and differentiate. Mutant brains exhibited enhanced cellularity due to increased proliferation of neuroblasts. These studies demonstrate that: (i) cell cycle deregulation during differentiation does not necessitate apoptosis; (ii) Rb-deficient mutants exhibit enhanced neuroblast proliferation; and (iii) terminal mitosis may not be required to initiate differentiation.


Asunto(s)
Proteínas del Tejido Nervioso/fisiología , Proteína de Retinoblastoma/fisiología , Telencéfalo/embriología , Alelos , Animales , Apoptosis , Biomarcadores , Ciclo Celular , Diferenciación Celular , División Celular , Corteza Cerebral/anomalías , Corteza Cerebral/embriología , Cruzamientos Genéticos , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Muerte Fetal/genética , Factores de Transcripción Forkhead , Genes Letales , Genes de Retinoblastoma , Ratones , Ratones Noqueados , Mutagénesis Insercional , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Neuronas/patología , Especificidad de Órganos , Proteína de Retinoblastoma/deficiencia , Telencéfalo/anomalías , Tubulina (Proteína)/biosíntesis , Tubulina (Proteína)/genética
12.
J Cell Biol ; 158(3): 507-17, 2002 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-12147675

RESUMEN

Caspase-independent death mechanisms have been shown to execute apoptosis in many types of neuronal injury. P53 has been identified as a key regulator of neuronal cell death after acute injury such as DNA damage, ischemia, and excitotoxicity. Here, we demonstrate that p53 can induce neuronal cell death via a caspase-mediated process activated by apoptotic activating factor-1 (Apaf1) and via a delayed onset caspase-independent mechanism. In contrast to wild-type cells, Apaf1-deficient neurons exhibit delayed DNA fragmentation and only peripheral chromatin condensation. More importantly, we demonstrate that apoptosis-inducing factor (AIF) is an important factor involved in the regulation of this caspase-independent neuronal cell death. Immunofluorescence studies demonstrate that AIF is released from the mitochondria by a mechanism distinct from that of cytochrome-c in neurons undergoing p53-mediated cell death. The Bcl-2 family regulates this release of AIF and subsequent caspase-independent cell death. In addition, we show that enforced expression of AIF can induce neuronal cell death in a Bax- and caspase-independent manner. Microinjection of neutralizing antibodies against AIF significantly decreased injury-induced neuronal cell death in Apaf1-deficient neurons, indicating its importance in caspase-independent apoptosis. Taken together, our results suggest that AIF may be an important therapeutic target for the treatment of neuronal injury.


Asunto(s)
Apoptosis/fisiología , Encéfalo/embriología , Caspasas/metabolismo , Flavoproteínas/metabolismo , Proteínas de la Membrana/metabolismo , Enfermedades Neurodegenerativas/enzimología , Neuronas/enzimología , Proteínas/metabolismo , Animales , Anticuerpos/farmacología , Factor Inductor de la Apoptosis , Factor Apoptótico 1 Activador de Proteasas , Encéfalo/citología , Encéfalo/enzimología , Camptotecina/farmacología , Inhibidores de Caspasas , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Daño del ADN/efectos de los fármacos , Daño del ADN/fisiología , Inhibidores Enzimáticos/farmacología , Flavoproteínas/genética , Frecuencia de los Genes/fisiología , Etiquetado Corte-Fin in Situ , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/citología , Proteínas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transfección , Proteína p53 Supresora de Tumor/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA