Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Clin Exp Metastasis ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717519

RESUMEN

Metastatic disease results from the dissemination of tumor cells beyond their organ of origin to grow in distant organs and is the primary cause of death in patients with advanced breast cancer. Preclinical murine models in which primary tumors spontaneously metastasize are valuable tools for studying metastatic progression and novel cancer treatment combinations. Here, we characterize a novel syngeneic murine breast tumor cell line that provides a model of spontaneously metastatic neu-expressing breast cancer with quicker onset of widespread metastases after orthotopic mammary implantation in immune-competent NeuN mice. The NT2.5-lung metastasis (-LM) cell line was derived from serial passaging of tumor cells that were macro-dissected from spontaneous lung metastases after orthotopic mammary implantation of parental NT2.5 cells. Within one week of NT2.5-LM implantation, metastases are observed in the lungs. Within four weeks, metastases are also observed in the bones, spleen, colon, and liver. We demonstrate that NT2.5-LM metastases are positive for NeuN-the murine equivalent of human epidermal growth factor 2 (HER2). We further demonstrate altered expression of markers of epithelial-to-mesenchymal transition (EMT), suggestive of their enhanced metastatic potential. Genomic analyses support these findings and reveal enrichment in EMT-regulating pathways. In addition, the metastases are rapidly growing, proliferative, and responsive to HER2-directed therapy. The new NT2.5-LM model provides certain advantages over the parental NT2/NT2.5 model, given its more rapid and spontaneous development of metastases. Besides investigating mechanisms of metastatic progression, this new model may be used for the rationalized development of novel therapeutic interventions and assessment of therapeutic responses.

2.
Sci Adv ; 10(12): eadl4239, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38507484

RESUMEN

In animal models, Nipbl deficiency phenocopies gene expression changes and birth defects seen in Cornelia de Lange syndrome, the most common cause of which is Nipbl haploinsufficiency. Previous studies in Nipbl+/- mice suggested that heart development is abnormal as soon as cardiogenic tissue is formed. To investigate this, we performed single-cell RNA sequencing on wild-type and Nipbl+/- mouse embryos at gastrulation and early cardiac crescent stages. Nipbl+/- embryos had fewer mesoderm cells than wild-type and altered proportions of mesodermal cell subpopulations. These findings were associated with underexpression of genes implicated in driving specific mesodermal lineages. In addition, Nanog was found to be overexpressed in all germ layers, and many gene expression changes observed in Nipbl+/- embryos could be attributed to Nanog overexpression. These findings establish a link between Nipbl deficiency, Nanog overexpression, and gene expression dysregulation/lineage misallocation, which ultimately manifest as birth defects in Nipbl+/- animals and Cornelia de Lange syndrome.


Asunto(s)
Síndrome de Cornelia de Lange , Animales , Ratones , Proteínas de Ciclo Celular/metabolismo , Síndrome de Cornelia de Lange/genética , Gastrulación/genética , Expresión Génica , Mutación , Fenotipo
3.
bioRxiv ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38496542

RESUMEN

Clonal hematopoiesis becomes increasingly common with age, but its cause is enigmatic because driver mutations are often absent. Serial observations infer weak selection indicating variants are acquired much earlier in life with unexplained initial growth spurts. Here we use fluctuating CpG methylation as a lineage marker to track stem cell clonal dynamics of hematopoiesis. We show, via the shared prenatal circulation of monozygotic twins, that weak selection conferred by stem cell variation created before birth can reliably yield clonal hematopoiesis later in life. Theory indicates weak selection will lead to dominance given enough time and large enough population sizes. Human hematopoiesis satisfies both these conditions. Stochastic loss of weakly selected variants is naturally prevented by the expansion of stem cell lineages during development. The dominance of stem cell clones created before birth is supported by blood fluctuating CpG methylation patterns that exhibit low correlation between unrelated individuals but are highly correlated between many elderly monozygotic twins. Therefore, clonal hematopoiesis driven by weak selection in later life appears to reflect variation created before birth.

4.
bioRxiv ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38352476

RESUMEN

Preclinical murine models in which primary tumors spontaneously metastasize to distant organs are valuable tools to study metastatic progression and novel cancer treatment combinations. Here, we characterize a novel syngeneic murine breast tumor cell line, NT2.5-lung metastasis (-LM), that provides a model of spontaneously metastatic neu-expressing breast cancer with quicker onset of widespread metastases after orthotopic mammary implantation in immune-competent NeuN mice. Within one week of orthotopic implantation of NT2.5-LM in NeuN mice, distant metastases can be observed in the lungs. Within four weeks, metastases are also observed in the bones, spleen, colon, and liver. Metastases are rapidly growing, proliferative, and responsive to HER2-directed therapy. We demonstrate altered expression of markers of epithelial-to-mesenchymal transition (EMT) and enrichment in EMT-regulating pathways, suggestive of their enhanced metastatic potential. The new NT2.5-LM model provides more rapid and spontaneous development of widespread metastases. Besides investigating mechanisms of metastatic progression, this new model may be used for the rationalized development of novel therapeutic interventions and assessment of therapeutic responses targeting distant visceral metastases.

5.
bioRxiv ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-37905011

RESUMEN

In animal models, Nipbl -deficiency phenocopies gene expression changes and birth defects seen in Cornelia de Lange Syndrome (CdLS), the most common cause of which is Nipbl -haploinsufficiency. Previous studies in Nipbl +/- mice suggested that heart development is abnormal as soon as cardiogenic tissue is formed. To investigate this, we performed single-cell RNA-sequencing on wildtype (WT) and Nipbl +/- mouse embryos at gastrulation and early cardiac crescent stages. Nipbl +/- embryos had fewer mesoderm cells than WT and altered proportions of mesodermal cell subpopulations. These findings were associated with underexpression of genes implicated in driving specific mesodermal lineages. In addition, Nanog was found to be overexpressed in all germ layers, and many gene expression changes observed in Nipbl +/- embryos could be attributed to Nanog overexpression. These findings establish a link between Nipbl -deficiency, Nanog overexpression, and gene expression dysregulation/lineage misallocation, which ultimately manifest as birth defects in Nipbl +/- animals and CdLS. Teaser: Gene expression changes during gastrulation of Nipbl -deficient mice shed light on early origins of structural birth defects.

6.
Dev Cell ; 58(21): 2338-2358.e5, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37673062

RESUMEN

Mammalian organs exhibit distinct physiology, disease susceptibility, and injury responses between the sexes. In the mouse kidney, sexually dimorphic gene activity maps predominantly to proximal tubule (PT) segments. Bulk RNA sequencing (RNA-seq) data demonstrated that sex differences were established from 4 and 8 weeks after birth under gonadal control. Hormone injection studies and genetic removal of androgen and estrogen receptors demonstrated androgen receptor (AR)-mediated regulation of gene activity in PT cells as the regulatory mechanism. Interestingly, caloric restriction feminizes the male kidney. Single-nuclear multiomic analysis identified putative cis-regulatory regions and cooperating factors mediating PT responses to AR activity in the mouse kidney. In the human kidney, a limited set of genes showed conserved sex-linked regulation, whereas analysis of the mouse liver underscored organ-specific differences in the regulation of sexually dimorphic gene expression. These findings raise interesting questions on the evolution, physiological significance, disease, and metabolic linkage of sexually dimorphic gene activity.


Asunto(s)
Riñón , Receptores Androgénicos , Animales , Femenino , Humanos , Masculino , Ratones , Expresión Génica , Regulación de la Expresión Génica , Riñón/metabolismo , Mamíferos/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Caracteres Sexuales
7.
Sci Adv ; 9(27): eadd9984, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37418531

RESUMEN

Macrophages are essential for skeletal muscle homeostasis, but how their dysregulation contributes to the development of fibrosis in muscle disease remains unclear. Here, we used single-cell transcriptomics to determine the molecular attributes of dystrophic and healthy muscle macrophages. We identified six clusters and unexpectedly found that none corresponded to traditional definitions of M1 or M2 macrophages. Rather, the predominant macrophage signature in dystrophic muscle was characterized by high expression of fibrotic factors, galectin-3 (gal-3) and osteopontin (Spp1). Spatial transcriptomics, computational inferences of intercellular communication, and in vitro assays indicated that macrophage-derived Spp1 regulates stromal progenitor differentiation. Gal-3+ macrophages were chronically activated in dystrophic muscle, and adoptive transfer assays showed that the gal-3+ phenotype was the dominant molecular program induced within the dystrophic milieu. Gal-3+ macrophages were also elevated in multiple human myopathies. These studies advance our understanding of macrophages in muscular dystrophy by defining their transcriptional programs and reveal Spp1 as a major regulator of macrophage and stromal progenitor interactions.


Asunto(s)
Macrófagos , Transcriptoma , Ratones , Animales , Humanos , Ratones Endogámicos C57BL , Macrófagos/metabolismo , Músculo Esquelético/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Fibrosis
8.
J R Soc Interface ; 20(203): 20230172, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37282589

RESUMEN

Single-cell genomic technologies offer vast new resources with which to study cells, but their potential to inform parameter inference of cell dynamics has yet to be fully realized. Here we develop methods for Bayesian parameter inference with data that jointly measure gene expression and Ca2+ dynamics in single cells. We propose to share information between cells via transfer learning: for a sequence of cells, the posterior distribution of one cell is used to inform the prior distribution of the next. In application to intracellular Ca2+ signalling dynamics, we fit the parameters of a dynamical model for thousands of cells with variable single-cell responses. We show that transfer learning accelerates inference with sequences of cells regardless of how the cells are ordered. However, only by ordering cells based on their transcriptional similarity can we distinguish Ca2+ dynamic profiles and associated marker genes from the posterior distributions. Inference results reveal complex and competing sources of cell heterogeneity: parameter covariation can diverge between the intracellular and intercellular contexts. Overall, we discuss the extent to which single-cell parameter inference informed by transcriptional similarity can quantify relationships between gene expression states and signalling dynamics in single cells.


Asunto(s)
Genómica , Transducción de Señal , Teorema de Bayes
9.
bioRxiv ; 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37131596

RESUMEN

Inference of gene regulatory networks (GRNs) can reveal cell state transitions from single-cell genomics data. However, obstacles to temporal inference from snapshot data are difficult to overcome. Single-nuclei multiomics data offer means to bridge this gap and derive temporal information from snapshot data using joint measurements of gene expression and chromatin accessibility in the same single cells. We developed popInfer to infer networks that characterize lineage-specific dynamic cell state transitions from joint gene expression and chromatin accessibility data. Benchmarking against alternative methods for GRN inference, we showed that popInfer achieves higher accuracy in the GRNs inferred. popInfer was applied to study single-cell multiomics data characterizing hematopoietic stem cells (HSCs) and the transition from HSC to a multipotent progenitor cell state during murine hematopoiesis across age and dietary conditions. From networks predicted by popInfer, we discovered gene interactions controlling entry to/exit from HSC quiescence that are perturbed in response to diet or aging.

10.
bioRxiv ; 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37131694

RESUMEN

The monocytic/macrophage system is essential for skeletal muscle homeostasis, but its dysregulation contributes to the pathogenesis of muscle degenerative disorders. Despite our increasing knowledge of the role of macrophages in degenerative disease, it still remains unclear how macrophages contribute to muscle fibrosis. Here, we used single-cell transcriptomics to determine the molecular attributes of dystrophic and healthy muscle macrophages. We identified six novel clusters. Unexpectedly, none corresponded to traditional definitions of M1 or M2 macrophage activation. Rather, the predominant macrophage signature in dystrophic muscle was characterized by high expression of fibrotic factors, galectin-3 and spp1. Spatial transcriptomics and computational inferences of intercellular communication indicated that spp1 regulates stromal progenitor and macrophage interactions during muscular dystrophy. Galectin-3 + macrophages were chronically activated in dystrophic muscle and adoptive transfer assays showed that the galectin-3 + phenotype was the dominant molecular program induced within the dystrophic milieu. Histological examination of human muscle biopsies revealed that galectin-3 + macrophages were also elevated in multiple myopathies. These studies advance our understanding of macrophages in muscular dystrophy by defining the transcriptional programs induced in muscle macrophages, and reveal spp1 as a major regulator of macrophage and stromal progenitor interactions.

11.
bioRxiv ; 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37205355

RESUMEN

Mammalian organs exhibit distinct physiology, disease susceptibility and injury responses between the sexes. In the mouse kidney, sexually dimorphic gene activity maps predominantly to proximal tubule (PT) segments. Bulk RNA-seq data demonstrated sex differences were established from 4 and 8 weeks after birth under gonadal control. Hormone injection studies and genetic removal of androgen and estrogen receptors demonstrated androgen receptor (AR) mediated regulation of gene activity in PT cells as the regulatory mechanism. Interestingly, caloric restriction feminizes the male kidney. Single-nuclear multiomic analysis identified putative cis-regulatory regions and cooperating factors mediating PT responses to AR activity in the mouse kidney. In the human kidney, a limited set of genes showed conserved sex-linked regulation while analysis of the mouse liver underscored organ-specific differences in the regulation of sexually dimorphic gene expression. These findings raise interesting questions on the evolution, physiological significance, and disease and metabolic linkage, of sexually dimorphic gene activity.

12.
Nat Methods ; 20(5): 655-664, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37024649

RESUMEN

Major computational challenges exist in relation to the collection, curation, processing and analysis of large genomic and imaging datasets, as well as the simulation of larger and more realistic models in systems biology. Here we discuss how a relative newcomer among programming languages-Julia-is poised to meet the current and emerging demands in the computational biosciences and beyond. Speed, flexibility, a thriving package ecosystem and readability are major factors that make high-performance computing and data analysis available to an unprecedented degree. We highlight how Julia's design is already enabling new ways of analyzing biological data and systems, and we provide a list of resources that can facilitate the transition into Julian computing.


Asunto(s)
Ecosistema , Lenguajes de Programación , Simulación por Computador , Metodologías Computacionales , Biología de Sistemas , Programas Informáticos
14.
Cancer Immunol Res ; 11(5): 614-628, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36848523

RESUMEN

Myeloid-derived suppressor cells (MDSC) play a prominent role in the tumor microenvironment. A quantitative understanding of the tumor-MDSC interactions that influence disease progression is critical, and currently lacking. We developed a mathematical model of metastatic growth and progression in immune-rich tumor microenvironments. We modeled the tumor-immune dynamics with stochastic delay differential equations and studied the impact of delays in MDSC activation/recruitment on tumor growth outcomes. In the lung environment, when the circulating level of MDSCs was low, the MDSC delay had a pronounced impact on the probability of new metastatic establishment: blocking MDSC recruitment could reduce the probability of metastasis by as much as 50%. To predict patient-specific MDSC responses, we fit to the model individual tumors treated with immune checkpoint inhibitors via Bayesian parameter inference. We reveal that control of the inhibition rate of natural killer (NK) cells by MDSCs had a larger influence on tumor outcomes than controlling the tumor growth rate directly. Posterior classification of tumor outcomes demonstrates that incorporating knowledge of the MDSC responses improved predictive accuracy from 63% to 82%. Investigation of the MDSC dynamics in an environment low in NK cells and abundant in cytotoxic T cells revealed, in contrast, that small MDSC delays no longer impacted metastatic growth dynamics. Our results illustrate the importance of MDSC dynamics in the tumor microenvironment overall and predict interventions promoting shifts toward less immune-suppressed states. We propose that there is a pressing need to consider MDSCs more often in analyses of tumor microenvironments.


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias , Humanos , Teorema de Bayes , Linfocitos T Citotóxicos , Células Asesinas Naturales , Microambiente Tumoral
15.
Nat Chem Biol ; 19(5): 540-541, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36635562
16.
Cell Rep Methods ; 2(4): 100204, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35497492

RESUMEN

Kong et al. present Capybara, a computational method to identify cell states from single-cell gene expression data. Notably, Capybara can identify intermediate cell states and cell state transitions, offering biologists new means with which to interrogate the states and fates of cells.


Asunto(s)
Roedores , Animales
17.
Blood ; 139(17): 2653-2665, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35231105

RESUMEN

Increasing evidence links metabolism, protein synthesis, and growth signaling to impairments in the function of hematopoietic stem and progenitor cells (HSPCs) during aging. The Lin28b/Hmga2 pathway controls tissue development, and the postnatal downregulation of this pathway limits the self-renewal of adult vs fetal hematopoietic stem cells (HSCs). Igf2bp2 is an RNA binding protein downstream of Lin28b/Hmga2, which regulates messenger RNA stability and translation. The role of Igf2bp2 in HSC aging is unknown. In this study, an analysis of wild-type and Igf2bp2 knockout mice showed that Igf2bp2 regulates oxidative metabolism in HSPCs and the expression of metabolism, protein synthesis, and stemness-related genes in HSCs of young mice. Interestingly, Igf2bp2 expression and function strongly declined in aging HSCs. In young mice, Igf2bp2 deletion mimicked aging-related changes in HSCs, including changes in Igf2bp2 target gene expression and impairment of colony formation and repopulation capacity. In aged mice, Igf2bp2 gene status had no effect on these parameters in HSCs. Unexpectedly, Igf2bp2-deficient mice exhibited an amelioration of the aging-associated increase in HSCs and myeloid-skewed differentiation. The results suggest that Igf2bp2 controls mitochondrial metabolism, protein synthesis, growth, and stemness of young HSCs, which is necessary for full HSC function during young adult age. However, Igf2bp2 gene function is lost during aging, and it appears to contribute to HSC aging in 2 ways: the aging-related loss of Igf2bp2 gene function impairs the growth and repopulation capacity of aging HSCs, and the activity of Igf2bp2 at a young age contributes to aging-associated HSC expansion and myeloid skewing.


Asunto(s)
Envejecimiento , Células Madre Hematopoyéticas , Proteínas de Unión al ARN , Envejecimiento/genética , Animales , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Noqueados , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
19.
Development ; 148(24)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34935903

RESUMEN

Cells do not make fate decisions independently. Arguably, every cell-fate decision occurs in response to environmental signals. In many cases, cell-cell communication alters the dynamics of the internal gene regulatory network of a cell to initiate cell-fate transitions, yet models rarely take this into account. Here, we have developed a multiscale perspective to study the granulocyte-monocyte versus megakaryocyte-erythrocyte fate decisions. This transition is dictated by the GATA1-PU.1 network: a classical example of a bistable cell-fate system. We show that, for a wide range of cell communication topologies, even subtle changes in signaling can have pronounced effects on cell-fate decisions. We go on to show how cell-cell coupling through signaling can spontaneously break the symmetry of a homogenous cell population. Noise, both intrinsic and extrinsic, shapes the decision landscape profoundly, and affects the transcriptional dynamics underlying this important hematopoietic cell-fate decision-making system. This article has an associated 'The people behind the papers' interview.


Asunto(s)
Comunicación Celular/genética , Diferenciación Celular/genética , Linaje de la Célula/genética , Hematopoyesis/genética , Animales , Eritrocitos/citología , Factor de Transcripción GATA1/genética , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Granulocitos/citología , Células Madre Hematopoyéticas/citología , Megacariocitos/citología , Modelos Teóricos , Monocitos/citología , Proteínas Proto-Oncogénicas/genética , Transducción de Señal , Análisis de la Célula Individual , Transactivadores/genética
20.
Cell Rep ; 37(12): 110140, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34936864

RESUMEN

Neural crest (NC) cells migrate throughout vertebrate embryos to give rise to a huge variety of cell types, but when and where lineages emerge and their regulation remain unclear. We have performed single-cell RNA sequencing (RNA-seq) of cranial NC cells from the first pharyngeal arch in zebrafish over several stages during migration. Computational analysis combining pseudotime and real-time data reveals that these NC cells first adopt a transitional state, becoming specified mid-migration, with the first lineage decisions being skeletal and pigment, followed by neural and glial progenitors. In addition, by computationally integrating these data with RNA-seq data from a transgenic Wnt reporter line, we identify gene cohorts with similar temporal responses to Wnts during migration and show that one, Atp6ap2, is required for melanocyte differentiation. Together, our results show that cranial NC cell lineages arise progressively and uncover a series of spatially restricted cell interactions likely to regulate such cell-fate decisions.


Asunto(s)
Linaje de la Célula , Cresta Neural/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Región Branquial/metabolismo , Comunicación Celular , Diferenciación Celular , Movimiento Celular , Nervios Craneales/metabolismo , Embrión no Mamífero/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , RNA-Seq , Transducción de Señal , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...