Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microsc Microanal ; : 1-10, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35644640

RESUMEN

The cultural heritage community is increasingly exploring synchrotron radiation (SR) based techniques for the study of art and archaeological objects. When considering heterogeneous and complex micro-samples, such as those from paintings, the combination of different SR X-ray techniques is often exploited to overcome the intrinsic limitations and sensitivity of the single technique. Less frequently, SR X-ray analyses are combined with SR micro-photoluminescence or micro-Fourier Transform Infrared spectroscopy, which provide complementary information on the molecular composition, offering a unique integrated analysis approach. Although the spatial correlation between the maps obtained with different techniques is not straightforward due to the different volumes probed by each method, the combination of the information provides a greater understanding and insight into the paint chemistry. In this work, we discuss the advantages and disadvantages of the combination of X-ray techniques and SR-based photoluminescence through the study of two paint micro-samples taken from Pablo Picasso's Femme (1907). The painting contains two cadmium yellow paints (based on CdS): one relatively intact and one visibly degraded. SR micro-analyses demonstrated that the two Cd-yellow paints differ in terms of structure, chemical composition, and photoluminescence properties. In particular, on the basis of the combination of different SR measurements, we hypothesize that the degraded yellow is based on nanocrystalline CdS with high presence of Cd(OH)Cl. These two characteristics have enhanced the reactivity of the paint and strongly influenced its stability.

2.
Anal Chem ; 91(5): 3421-3428, 2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30706704

RESUMEN

Paints based on cadmium sulfide (CdS) were popular among artists beginning in the mid-19th century. Some paint formulations are prone to degrade, discoloring and disfiguring paintings where they have been used. Pablo Picasso's Femme (Époque des "Demoiselles d'Avignon") (1907) includes two commercial formulations of CdS: one is visibly degraded and now appears brownish yellow, while the other appears relatively intact and is vibrant yellow. This observation inspired the study reported here of the photoluminescence emission from trap states of the two CdS paints, complemented by data from multispectral imaging, X-ray fluorescence spectroscopy, micro-FTIR, and SEM-EDS. The two paints exhibit trap state emissions that differ in terms of spectrum, intensity, and decay kinetics. In the now-brownish yellow paint, trap state emission is highly favored with respect to near band edge optical recombination. This observation suggests a higher density of surface defects in the now-brownish yellow paint that promotes the surface reactivity of CdS particles and their subsequent paint degradation. CdS is a semiconductor, and surface defects in semiconductors can trap free charge carriers; this interaction becomes stronger at reduced particle size or, equivalently, with increased surface to volume ratio. Here, we speculate that the strong trap state emission in the now-brownish cadmium yellow paint is linked to the presence of CdS particles with a nanocrystalline phase, possibly resulting from a low degree of calcination during pigment synthesis. Taken together, the results presented here demonstrate how photoluminescence studies can probe surface defects in CdS paints and lead to an improved understanding of their complex degradation mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA