Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(18): 12300-12309, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38657210

RESUMEN

Metallaphotoredox cross-coupling is a well-established strategy for generating clinically privileged aliphatic scaffolds via single-electron reactivity. Correspondingly, expanding metallaphotoredox to encompass new C(sp3)-coupling partners could provide entry to a novel, medicinally relevant chemical space. In particular, alkenes are abundant, bench-stable, and capable of versatile C(sp3)-radical reactivity via metal-hydride hydrogen atom transfer (MHAT), although metallaphotoredox methodologies invoking this strategy remain underdeveloped. Importantly, merging MHAT activation with metallaphotoredox could enable the cross-coupling of olefins with feedstock partners such as alcohols, which undergo facile open-shell activation via photocatalysis. Herein, we report the first C(sp3)-C(sp3) coupling of MHAT-activated alkenes with alcohols by performing deoxygenative hydroalkylation via triple cocatalysis. Through synergistic Ir photoredox, Mn MHAT, and Ni radical sorting pathways, this branch-selective protocol pairs diverse olefins and methanol or primary alcohols with remarkable functional group tolerance to enable the rapid construction of complex aliphatic frameworks.

2.
Cell Chem Biol ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38663396

RESUMEN

Understanding the intricate network of biomolecular interactions that govern cellular processes is a fundamental pursuit in biology. Over the past decade, photocatalytic proximity labeling has emerged as one of the most powerful and versatile techniques for studying these interactions as well as uncovering subcellular trafficking patterns, drug mechanisms of action, and basic cellular physiology. In this article, we review the basic principles, methodologies, and applications of photocatalytic proximity labeling as well as examine its modern development into currently available platforms. We also discuss recent key studies that have successfully leveraged these technologies and importantly highlight current challenges faced by the field. Together, this review seeks to underscore the potential of photocatalysis in proximity labeling for enhancing our understanding of cell biology while also providing perspective on technological advances needed for future discovery.

3.
Nature ; 628(8007): 326-332, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38480891

RESUMEN

Heteroarenes are ubiquitous motifs in bioactive molecules, conferring favourable physical properties when compared to their arene counterparts1-3. In particular, semisaturated heteroarenes possess attractive solubility properties and a higher fraction of sp3 carbons, which can improve binding affinity and specificity. However, these desirable structures remain rare owing to limitations in current synthetic methods4-6. Indeed, semisaturated heterocycles are laboriously prepared by means of non-modular fit-for-purpose syntheses, which decrease throughput, limit chemical diversity and preclude their inclusion in many hit-to-lead campaigns7-10. Herein, we describe a more intuitive and modular couple-close approach to build semisaturated ring systems from dual radical precursors. This platform merges metallaphotoredox C(sp2)-C(sp3) cross-coupling with intramolecular Minisci-type radical cyclization to fuse abundant heteroaryl halides with simple bifunctional feedstocks, which serve as the diradical synthons, to rapidly assemble a variety of spirocyclic, bridged and substituted saturated ring types that would be extremely difficult to make by conventional methods. The broad availability of the requisite feedstock materials allows sampling of regions of underexplored chemical space. Reagent-controlled radical generation leads to a highly regioselective and stereospecific annulation that can be used for the late-stage functionalization of pharmaceutical scaffolds, replacing lengthy de novo syntheses.


Asunto(s)
Carbono , Técnicas de Química Sintética , Compuestos Heterocíclicos con 1 Anillo , Preparaciones Farmacéuticas , Carbono/química , Ciclización , Compuestos Heterocíclicos con 1 Anillo/síntesis química , Compuestos Heterocíclicos con 1 Anillo/química , Solubilidad , Oxidación-Reducción , Fotoquímica , Preparaciones Farmacéuticas/síntesis química , Preparaciones Farmacéuticas/química , Técnicas de Química Sintética/métodos
4.
Science ; 383(6689): 1350-1357, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38513032

RESUMEN

Alcohols represent a functional group class with unparalleled abundance and structural diversity. In an era of chemical synthesis that prioritizes reducing time to target and maximizing exploration of chemical space, harnessing these building blocks for carbon-carbon bond-forming reactions is a key goal in organic chemistry. In particular, leveraging a single activation mode to form a new C(sp3)-C(sp3) bond from two alcohol subunits would enable access to an extraordinary level of structural diversity. In this work, we report a nickel radical sorting-mediated cross-alcohol coupling wherein two alcohol fragments are deoxygenated and coupled in one reaction vessel, open to air.

5.
J Am Chem Soc ; 146(12): 7942-7949, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38470101

RESUMEN

Here we report the design of a general, redox-switchable organophosphorus alkyl radical trap that enables the synthesis of a broad range of C(sp3)-P(V) modalities. This "plug-and-play" approach relies upon in situ activation of alcohols and O═P(R2)H motifs, two broadly available and inexpensive sources of molecular complexity. The mild, photocatalytic deoxygenative strategy described herein allows for the direct conversion of sugars, nucleosides, and complex pharmaceutical architectures to their organophosphorus analogs. This includes the facile incorporation of medicinally relevant phosphonate ester prodrugs.

6.
J Am Chem Soc ; 146(8): 5067-5073, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38365186

RESUMEN

The replacement of a functional group with its corresponding bioisostere is a widely employed tactic during drug discovery campaigns that allows medicinal chemists to improve the ADME properties of candidates while maintaining potency. However, the incorporation of bioisosteres typically requires lengthy de novo resynthesis of potential candidates, which represents a bottleneck in their broader evaluation. An alternative would be to directly convert a functional group into its corresponding bioisostere at a late stage. Herein, we report the realization of this approach through the conversion of aliphatic alcohols into the corresponding difluoromethylated analogues via the merger of benzoxazolium-mediated deoxygenation and copper-mediated C(sp3)-CF2H bond formation. The utility of this method is showcased in a variety of complex alcohols and drug compounds.


Asunto(s)
Descubrimiento de Drogas , Alcoholes/química
7.
Nature ; 628(8006): 104-109, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350601

RESUMEN

The development of bimolecular homolytic substitution (SH2) catalysis has expanded cross-coupling chemistries by enabling the selective combination of any primary radical with any secondary or tertiary radical through a radical sorting mechanism1-8. Biomimetic9,10 SH2 catalysis can be used to merge common feedstock chemicals-such as alcohols, acids and halides-in various permutations for the construction of a single C(sp3)-C(sp3) bond. The ability to sort these two distinct radicals across commercially available alkenes in a three-component manner would enable the simultaneous construction of two C(sp3)-C(sp3) bonds, greatly accelerating access to complex molecules and drug-like chemical space11. However, the simultaneous in situ formation of electrophilic and primary nucleophilic radicals in the presence of unactivated alkenes is problematic, typically leading to statistical radical recombination, hydrogen atom transfer, disproportionation and other deleterious pathways12,13. Here we report the use of bimolecular homolytic substitution catalysis to sort an electrophilic radical and a nucleophilic radical across an unactivated alkene. This reaction involves the in situ formation of three distinct radical species, which are then differentiated by size and electronics, allowing for regioselective formation of the desired dialkylated products. This work accelerates access to pharmaceutically relevant C(sp3)-rich molecules and defines a distinct mechanistic approach for alkene dialkylation.


Asunto(s)
Alquenos , Catálisis , Hidrógeno , Ácidos/química , Alcoholes/química , Alquenos/química , Biomimética , Hidrógeno/química , Preparaciones Farmacéuticas/síntesis química , Preparaciones Farmacéuticas/química
8.
Org Lett ; 26(14): 2702-2707, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37094230

RESUMEN

C(sp3)-rich aliphatic motifs in drug molecules are strongly associated with clinical success. Historically, the availability of compound libraries based on C(sp3)-rich cores has been limited due to the challenging direct functionalization of aliphatic rings. Instead, most small molecule drug-like libraries are diversified around central aromatic rings. Herein, we present a general approach to the synthesis of diversified libraries featuring aliphatic core rings via photoredox catalysis under mild conditions.


Asunto(s)
Química Farmacéutica , Catálisis
9.
Science ; 382(6667): 191-197, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824651

RESUMEN

Second- and third-row transition metal complexes are widely employed in photocatalysis, whereas earth-abundant first-row transition metals have found only limited use because of the prohibitively fast decay of their excited states. We report an unforeseen reactivity mode for productive photocatalysis that uses cobalt polypyridyl complexes as photocatalysts by exploiting Marcus inverted region behavior that couples increases in excited-state energies with increased excited-state lifetimes. These cobalt (III) complexes can engage in bimolecular reactivity by virtue of their strong redox potentials and sufficiently long excited-state lifetimes, catalyzing oxidative C(sp2)-N coupling of aryl amides with challenging sterically hindered aryl boronic acids. More generally, the results imply that chromophores can be designed to increase excited-state lifetimes while simultaneously increasing excited-state energies, providing a pathway for the use of relatively abundant metals as photoredox catalysts.

10.
J Am Chem Soc ; 145(39): 21189-21196, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37729614

RESUMEN

The coupling of carboxylic acids and amines to form amide linkages is the most commonly performed reaction in the pharmaceutical industry. Herein, we report a new strategy that merges these traditional amide coupling partners to generate sulfonamides, important amide bioisosteres. This method leverages copper ligand-to-metal charge transfer (LMCT) to convert aromatic acids to sulfonyl chlorides, followed by one-pot amination to form the corresponding sulfonamide. This process requires no prefunctionalization of the native acid or amine and extends to a diverse set of aryl, heteroaryl, and s-rich aliphatic substrates. Further, we extend this strategy to the synthesis of (hetero)aryl sulfonyl fluorides, which have found utility as "click" handles in chemical probes and programmable bifunctional reagents. Finally, we demonstrate the utility of these protocols in pharmaceutical analogue synthesis.

11.
J Am Chem Soc ; 145(38): 20767-20774, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37721547

RESUMEN

Sulfinates are important lynchpin intermediates in pharmaceutical production; however, their synthesis via photoredox catalysis is challenging because of their facile oxidation. We herein disclose a photocatalytic strategy for the direct conversion of alcohols and alkyl bromides into alkyl sulfinates. These transformations are enabled by the utilization of easily oxidized radical precursors─namely, alcohol N-heterocyclic carbene adducts and N-adamantyl aminosupersilane─that facilitate efficient synthesis of the oxidatively labile sulfinate products. A broad range of functional groups are amenable to the reported transformations, providing rapid access to sulfonamides, sulfonyl halides, sulfones, and sulfonic acids. The utility of these methods is further demonstrated via the late-stage diversification of natural products and drugs into pharmaceutically relevant sulfonamides and "clickable" sulfonyl fluorides. In summary, this work illustrates the potential of novel radical precursors to expand the breadth of photoredox transformations.

12.
J Am Chem Soc ; 145(30): 16330-16336, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37471294

RESUMEN

Quaternary carbons are ubiquitous in bioactive molecules; however, synthetic methods for the construction of this motif remain underdeveloped. Here, we report the synthesis of quaternary carbons from tertiary alcohols, a class of structurally diverse, bench-stable feedstocks, via the merger of photoredox catalysis and iron-mediated SH2 bond formation. This alcohol-bromide cross-coupling is enabled by a novel halogen-atom transfer (XAT) reagent, which is the first reductively activated XAT reagent to be reported. A wide variety of sterically congested quaternary products can be accessed through this mild and practical protocol including products derived from both alkylation and benzylation of tertiary fragments. We further demonstrate the synthetic utility of this method through the expedited synthesis of a liver receptor agonist and through a two-step conversion of ketones and esters to quaternary products, which enables the modular control of up to three of the four substituents on a quaternary center.

13.
J Am Chem Soc ; 145(30): 16289-16296, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37471577

RESUMEN

The characterization of ligand binding modes is a crucial step in the drug discovery process and is especially important in campaigns arising from phenotypic screening, where the protein target and binding mode are unknown at the outset. Elucidation of target binding regions is typically achieved by X-ray crystallography or photoaffinity labeling (PAL) approaches; yet, these methods present significant challenges. X-ray crystallography is a mainstay technique that has revolutionized drug discovery, but in many cases structural characterization is challenging or impossible. PAL has also enabled binding site mapping with peptide- and amino-acid-level resolution; however, the stoichiometric activation mode can lead to poor signal and coverage of the resident binding pocket. Additionally, each PAL probe can have its own fragmentation pattern, complicating the analysis by mass spectrometry. Here, we establish a robust and general photocatalytic approach toward the mapping of protein binding sites, which we define as identification of residues proximal to the ligand binding pocket. By utilizing a catalytic mode of activation, we obtain sets of labeled amino acids in the proximity of the target protein binding site. We use this methodology to map, in vitro, the binding sites of six protein targets, including several kinases and molecular glue targets, and furthermore to investigate the binding site of the STAT3 inhibitor MM-206, a ligand with no known crystal structure. Finally, we demonstrate the successful mapping of drug binding sites in live cells. These results establish µMap as a powerful method for the generation of amino-acid- and peptide-level target engagement data.


Asunto(s)
Péptidos , Proteínas , Ligandos , Proteínas/química , Sitios de Unión , Péptidos/química , Unión Proteica
14.
Nature ; 618(7965): 513-518, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37015289

RESUMEN

The replacement of benzene rings with sp3-hybridized bioisosteres in drug candidates generally improves pharmacokinetic properties while retaining biological activity1-5. Rigid, strained frameworks such as bicyclo[1.1.1]pentane and cubane are particularly well suited as the ring strain imparts high bond strength and thus metabolic stability on their C-H bonds. Cubane is the ideal bioisostere as it provides the closest geometric match to benzene6,7. At present, however, all cubanes in drug design, like almost all benzene bioisosteres, act solely as substitutes for mono- or para-substituted benzene rings1-7. This is owing to the difficulty of accessing 1,3- and 1,2-disubstituted cubane precursors. The adoption of cubane in drug design has been further hindered by the poor compatibility of cross-coupling reactions with the cubane scaffold, owing to a competing metal-catalysed valence isomerization8-11. Here we report expedient routes to 1,3- and 1,2-disubstituted cubane building blocks using a convenient cyclobutadiene precursor and a photolytic C-H carboxylation reaction, respectively. Moreover, we leverage the slow oxidative addition and rapid reductive elimination of copper to develop C-N, C-C(sp3), C-C(sp2) and C-CF3 cross-coupling protocols12,13. Our research enables facile elaboration of all cubane isomers into drug candidates, thus enabling ideal bioisosteric replacement of ortho-, meta- and para-substituted benzenes.

15.
Nature ; 616(7957): 574-580, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37020029

RESUMEN

Interactions between biomolecules underlie all cellular processes and ultimately control cell fate. Perturbation of native interactions through mutation, changes in expression levels or external stimuli leads to altered cellular physiology and can result in either disease or therapeutic effects1,2. Mapping these interactions and determining how they respond to stimulus is the genesis of many drug development efforts, leading to new therapeutic targets and improvements in human health1. However, in the complex environment of the nucleus, it is challenging to determine protein-protein interactions owing to low abundance, transient or multivalent binding and a lack of technologies that are able to interrogate these interactions without disrupting the protein-binding surface under study3. Here, we describe a method for the traceless incorporation of iridium-photosensitizers into the nuclear micro-environment using engineered split inteins. These Ir-catalysts can activate diazirine warheads through Dexter energy transfer to form reactive carbenes within an approximately 10 nm radius, cross-linking with proteins in the immediate micro-environment (a process termed µMap) for analysis using quantitative chemoproteomics4. We show that this nanoscale proximity-labelling method can reveal the critical changes in interactomes in the presence of cancer-associated mutations, as well as treatment with small-molecule inhibitors. µMap improves our fundamental understanding of nuclear protein-protein interactions and, in doing so, is expected to have a significant effect on the field of epigenetic drug discovery in both academia and industry.


Asunto(s)
Núcleo Celular , Cromatina , Reactivos de Enlaces Cruzados , Humanos , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Reactivos de Enlaces Cruzados/análisis , Reactivos de Enlaces Cruzados/química , Transferencia de Energía , Epigenómica , Inteínas , Iridio , Mutación , Neoplasias/genética , Fármacos Fotosensibilizantes , Unión Proteica , Mapas de Interacción de Proteínas
16.
J Am Chem Soc ; 145(14): 7736-7742, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36975797

RESUMEN

Alcohols are commercially abundant and structurally diverse reservoirs of sp3-hybridized chemical space. However, the direct utilization of alcohols in C-C bond-forming cross-couplings remains underexplored. Herein we report an N-heterocyclic carbene (NHC)-mediated deoxygenative alkylation of alcohols and alkyl bromides via nickel-metallaphotoredox catalysis. This C(sp3)-C(sp3) cross-coupling exhibits a broad scope and is capable of forming bonds between two secondary carbon centers, a longstanding challenge in the field. Highly strained three-dimensional systems such as spirocycles, bicycles, and fused rings were excellent substrates, enabling the synthesis of new molecular frameworks. Linkages between pharmacophoric saturated ring systems were readily forged, representing a three-dimensional alternative to traditional biaryl formation. The utility of this cross-coupling technology is highlighted with the expedited synthesis of bioactive molecules.

17.
J Am Chem Soc ; 145(5): 3092-3100, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36696089

RESUMEN

The replacement of aryl rings with saturated carbocyclic structures has garnered significant interest in drug discovery due to the potential for improved pharmacokinetic properties upon substitution. In particular, 1,3-difunctionalized bicyclo[1.1.1]pentanes (BCPs) have been widely adopted as bioisosteres for parasubstituted arene rings, appearing in a number of lead pharmaceutical candidates. However, despite the pharmaceutical value of 2-substituted BCPs as replacements for ortho- or meta-substituted arene rings, general and rapid syntheses of these scaffolds remain elusive. Current approaches to 2-substituted BCPs rely on installation of the bridge substituent prior to BCP core construction, leading to lengthy step counts and often nonmodular sequences. While challenging, direct functionalization of the strong bridge BCP C-H bonds would offer a more streamlined pathway to diverse 2-substituted BCPs. Here, we report a generalizable synthetic linchpin strategy for bridge functionalization via radical C-H abstraction of the BCP core. Through mild generation of a strong hydrogen atom abstractor, we rapidly synthesize novel 2-substituted BCP synthetic linchpins in one pot. These synthetic linchpins then serve as common precursors to complex 2-substituted BCPs, allowing one-step access to a number of previously inaccessible electrophile and nucleophile fragments at the 2-position via two new metallaphotoredox protocols. Altogether, this platform enables the expedient synthesis of four pharmaceutical analogues, all of which show similar or improved properties compared to their aryl-containing equivalents, demonstrating the potential of these 2-substituted BCPs in drug development.

18.
J Am Chem Soc ; 145(5): 2787-2793, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36696091

RESUMEN

Methyl groups are well understood to play a critical role in pharmaceutical molecules, especially those bearing saturated heterocyclic cores. Accordingly, methods that install methyl groups onto complex molecules are highly coveted. Late-stage C-H functionalization is a particularly attractive approach, allowing chemists to bypass lengthy syntheses and facilitating the expedited synthesis of drug analogues. Herein, we disclose the direct introduction of methyl groups via C(sp3)-H functionalization of a broad array of saturated heterocycles, enabled by the merger of decatungstate photocatalysis and a unique nickel-mediated SH2 bond formation. To further demonstrate its synthetic utility as a tool for late-stage functionalization, this method was applied to a range of drug molecules en route to an array of methylated drug analogues.


Asunto(s)
Níquel , Metilación , Níquel/química
19.
Acc Chem Res ; 55(23): 3481-3494, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36472093

RESUMEN

The development of palladium-catalyzed cross-coupling methods for the activation of C(sp2)-Br bonds facilitated access to arene-rich molecules, enabling a concomitant increase in the prevalence of this structural motif in drug molecules in recent decades. Today, there is a growing appreciation of the value of incorporating saturated C(sp3)-rich scaffolds into pharmaceutically active molecules as a means to achieve improved solubility and physiological stability, providing the impetus to develop new coupling strategies to access these challenging motifs in the most straightforward way possible. As an alternative to classical two-electron chemistry, redox chemistry can enable access to elusive transformations, most recently, by interfacing abundant first-row transition-metal catalysis with photoredox catalysis. As such, the functionalization of ubiquitous and versatile functional handles such as (aliphatic) carboxylic acids via metallaphotoredox catalysis has emerged as a valuable field of research over the past eight years.In this Account, we will outline recent progress in the development of methodologies that employ aliphatic and (hetero)aromatic carboxylic acids as adaptive functional groups. Whereas recent decarboxylative functionalization methodologies often necessitate preactivated aliphatic carboxylic acids in the form of redox-active esters or as ligands for hypervalent iodine reagents, methods that enable the direct use of the native carboxylic acid functionality are highly desired and have been accomplished through metallaphotoredox protocols. As such, we found that bench-stable aliphatic carboxylic acids can undergo diverse transformations, such as alkylation, arylation, amination, and trifluoromethylation, by leveraging metallaphotoredox catalysis with prevalent first-row transition metals such as nickel and copper. Likewise, abundant aryl carboxylic acids are now able to undergo halogenation and borylation, enabling new entry points for traditional, primarily palladium- or copper-catalyzed cross-coupling strategies. Given the breadth of the functional group tolerance of the employed reaction conditions, the late-stage functionalization of abundant carboxylic acids toward desired targets has become a standard tool in reaction design, enabling the synthesis of various diversified drug molecules. The rapid rise of this field has positively inspired pharmaceutical discovery and will be further accelerated by novel reaction development. The achievement of generality through reaction optimization campaigns allows for future breakthroughs that can render protocols more reliable and applicable for industry. This article is intended to highlight, in particular, (i) the employment of aliphatic and (hetero)aryl carboxylic acids as powerful late-stage adaptive functional handles in drug discovery and (ii) the need for the further development of still-elusive and selective transformations.We strongly believe that access to native functionalities such as carboxylic acids as adaptive handles will further inspire researchers across the world to investigate new methodologies for complex molecular targets.


Asunto(s)
Ácidos Carboxílicos , Elementos de Transición , Ácidos Carboxílicos/química , Paladio/química , Cobre/química , Catálisis , Níquel/química
20.
J Am Chem Soc ; 144(51): 23633-23641, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36525649

RESUMEN

Sialylation, the addition of sialic acid to glycans, is a crucial post-translational modification of proteins, contributing to neurodevelopment, oncogenesis, and immune response. In cancer, sialylation is dramatically upregulated. Yet, the functional biochemical consequences of sialylation remain mysterious. Here, we establish a µMap proximity labeling platform that utilizes metabolically inserted azidosialic acid to introduce iridium-based photocatalysts on sialylated cell-surface glycoproteins as a means to profile local microenvironments across the sialylated proteome. In comparative experiments between primary cervical cells and a cancerous cell line (HeLa), we identify key differences in both the global sialome and proximal proteins, including solute carrier proteins that regulate metabolite and ion transport. In particular, we show that cell-surface interactions between receptors trafficking ethanolamine and zinc are sialylation-dependent and impact intracellular metabolite levels. These results establish a µMap method for interrogating proteoglycan function and support a role for sialylated glycoproteins in regulating cell-surface transporters.


Asunto(s)
Glicoproteínas , Ácido N-Acetilneuramínico , Humanos , Glicoproteínas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Glicoproteínas de Membrana/metabolismo , Membrana Celular/metabolismo , Transporte Iónico , Polisacáridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...