Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Clin Transl Neurol ; 10(9): 1695-1699, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37452008

RESUMEN

Dravet syndrome (DS) is a monogenic, often refractory, epilepsy resultant from SCN1A haploinsufficiency in humans. A novel therapeutic target in DS that can be engaged in isolation or as adjunctive therapy is highly desirable. Here, we demonstrate reduced expression of the rodent glutamate transporter type 1 (GLT-1) in a DS mouse model, and in wild type mouse strains where Scn1a haploinsufficiency is most likely to cause epilepsy, indicating that GLT-1 depression may play a role in DS seizures. As GLT-1 can be upregulated by common and safe FDA-approved medications, this strategy may be an attractive, viable, and novel avenue for DS treatment.


Asunto(s)
Epilepsias Mioclónicas , Epilepsia , Transportador 2 de Aminoácidos Excitadores , Animales , Humanos , Ratones , Sistema de Transporte de Aminoácidos X-AG , Epilepsias Mioclónicas/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Convulsiones , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/metabolismo
2.
Dev Med Child Neurol ; 65(12): 1596-1606, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37246331

RESUMEN

AIM: To elucidate the etiological aspects of autism spectrum disorder (ASD) in succinic semialdehyde dehydrogenase deficiency (SSADHD), related to dysregulation of γ-aminobutyric acid (GABA) and the imbalance of excitatory and inhibitory neurotransmission. METHOD: In this prospective, international study, individuals with SSADHD underwent neuropsychological assessments, as well as biochemical, neurophysiological, and neuroimaging evaluations. RESULTS: Of the 29 individuals (17 females) enrolled (median age [IQR] 10 years 5 months [5 years 11 months-18 years 1 month]), 16 were diagnosed with ASD. ASD severity significantly increased with age (r = 0.67, p < 0.001) but was inversely correlated with plasma GABA (r = -0.67, p < 0.001) and γ-hydroxybutyrate levels (r = -0.538, p = 0.004), and resting motor threshold as measured by transcranial magnetic stimulation (r = -0.44, p = 0.03). A discriminative analysis indicated that an age older than 7 years 2 months (p = 0.004) and plasma GABA levels less than 2.47 µM (p = 0.01) are the threshold values beyond which the likelihood of ASD presenting in individuals with SSADHD is increased. INTERPRETATION: ASD is prevalent but not universal in SSADHD, and it can be predicted by lower levels of plasma GABA and GABA-related metabolites. ASD severity in SSADHD increases with age and the loss of cortical inhibition. These findings add insight into the pathophysiology of ASD and may facilitate its early diagnosis and intervention in individuals with SSADHD.


Asunto(s)
Trastorno del Espectro Autista , Femenino , Humanos , Niño , Lactante , Estudios Prospectivos , Discapacidades del Desarrollo , Ácido gamma-Aminobutírico/metabolismo
3.
Epilepsia ; 64(6): 1516-1526, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36961285

RESUMEN

OBJECTIVE: Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare inherited metabolic disorder caused by a defect of γ-aminobutyrate (GABA) catabolism. Despite the resultant hyper-GABAergic environment facilitated by the metabolic defect, individuals with this disorder have a paradoxically high prevalence of epilepsy. We aimed to study the characteristics of epilepsy in SSADHD and its concordance with GABA-related metabolites and neurophysiologic markers of cortical excitation. METHODS: Subjects in an international natural history study of SSADHD underwent clinical assessments, electroencephalography, transcranial magnetic stimulation (TMS), magnetic resonance spectroscopy for GABA/N-acetyl aspartate quantification, and plasma GABA-related metabolite measurements. RESULTS: A total of 61 subjects with SSADHD and 42 healthy controls were included in the study. Epilepsy was present in 49% of the SSADHD cohort. Over time, there was an increase in severity in 33% of the subjects with seizures. The presence of seizures was associated with increasing age (p = .001) and lower levels of GABA (p = .002), γ-hydroxybutyrate (GHB; p = .004), and γ-guanidinobutyrate (GBA; p = .003). Seizure severity was associated with increasing age and lower levels of GABA-related metabolites as well as lower TMS-derived resting motor thresholds (p = .04). The cutoff values with the highest discriminative ability to predict seizures were age > 9.2 years (p = .001), GABA < 2.57 µmol·L-1 (p = .002), GHB < 143.6 µmol·L-1 (p = .004), and GBA < .075 µmol·L-1 (p = .007). A prediction model for seizures in SSADHD was comprised of the additive effect of older age and lower plasma GABA, GHB, and GBA (area under the receiver operating characteristic curve of .798, p = .008). SIGNIFICANCE: Epilepsy is highly prevalent in SSADHD, and its onset and severity correlate with an age-related decline in GABA and GABA-related metabolite levels as well as TMS markers of reduced cortical inhibition. The reduction of GABAergic activity in this otherwise hyper-GABAergic disorder demonstrates a concordance between epileptogenesis and compensatory responses. These findings may furthermore inform the timing of molecular interventions for SSADHD.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Epilepsia , Oxibato de Sodio , Humanos , Niño , Errores Innatos del Metabolismo de los Aminoácidos/complicaciones , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Discapacidades del Desarrollo , Epilepsia/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Aminobutiratos , Convulsiones
4.
Cereb Cortex ; 33(7): 4070-4084, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36130098

RESUMEN

Traumatic brain injury (TBI) increases cerebral reactive oxygen species production, which leads to continuing secondary neuronal injury after the initial insult. Cortical parvalbumin-positive interneurons (PVIs; neurons responsible for maintaining cortical inhibitory tone) are particularly vulnerable to oxidative stress and are thus disproportionately affected by TBI. Systemic N-acetylcysteine (NAC) treatment may restore cerebral glutathione equilibrium, thus preventing post-traumatic cortical PVI loss. We therefore tested whether weeks-long post-traumatic NAC treatment mitigates cortical oxidative stress, and whether such treatment preserves PVI counts and related markers of PVI integrity and prevents pathologic electroencephalographic (EEG) changes, 3 and 6 weeks after fluid percussion injury in rats. We find that moderate TBI results in persistent oxidative stress for at least 6 weeks after injury and leads to the loss of PVIs and the perineuronal net (PNN) that surrounds them as well as of per-cell parvalbumin expression. Prolonged post-TBI NAC treatment normalizes the cortical redox state, mitigates PVI and PNN loss, and - in surviving PVIs - increases per-cell parvalbumin expression. NAC treatment also preserves normal spectral EEG measures after TBI. We cautiously conclude that weeks-long NAC treatment after TBI may be a practical and well-tolerated treatment strategy to preserve cortical inhibitory tone post-TBI.


Asunto(s)
Acetilcisteína , Lesiones Traumáticas del Encéfalo , Ratas , Animales , Acetilcisteína/farmacología , Acetilcisteína/metabolismo , Parvalbúminas/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Estrés Oxidativo/fisiología , Interneuronas/metabolismo
5.
Epilepsia ; 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35176173

RESUMEN

OBJECTIVE: Our primary goal was to measure the accuracy of fully automated absence seizure detection, using a wearable electroencephalographic (EEG) device. As a secondary goal, we also tested the feasibility of automated behavioral testing triggered by the automated detection. METHODS: We conducted a phase 3 clinical trial (NCT04615442), with a prospective, multicenter, blinded study design. The input was the one-channel EEG recorded with dry electrodes embedded into a wearable headband device connected to a smartphone. The seizure detection algorithm was developed using artificial intelligence (convolutional neural networks). During the study, the predefined algorithm, with predefined cutoff value, analyzed the EEG in real time. The gold standard was derived from expert evaluation of simultaneously recorded full-array video-EEGs. In addition, we evaluated the patients' responsiveness to the automated alarms on the smartphone, and we compared it with the behavioral changes observed in the clinical video-EEGs. RESULTS: We recorded 102 consecutive patients (57 female, median age = 10 years) on suspicion of absence seizures. We recorded 364 absence seizures in 39 patients. Device deficiency was 4.67%, with a total recording time of 309 h. Average sensitivity per patient was 78.83% (95% confidence interval [CI] = 69.56%-88.11%), and median sensitivity was 92.90% (interquartile range [IQR] = 66.7%-100%). The average false detection rate was .53/h (95% CI = .32-.74). Most patients (n = 66, 64.71%) did not have any false alarms. The median F1 score per patient was .823 (IQR = .57-1). For the total recording duration, F1 score was .74. We assessed the feasibility of automated behavioral testing in 36 seizures; it correctly documented nonresponsiveness in 30 absence seizures, and responsiveness in six electrographic seizures. SIGNIFICANCE: Automated detection of absence seizures with a wearable device will improve seizure quantification and will promote assessment of patients in their home environment. Linking automated seizure detection to automated behavioral testing will provide valuable information from wearable devices.

6.
Transl Psychiatry ; 11(1): 325, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34045439

RESUMEN

TAK-653 is a novel α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-positive allosteric modulator being developed as a potential therapeutic for major depressive disorder (MDD). Currently, there are no translational biomarkers that evaluate physiological responses to the activation of glutamatergic brain circuits available. Here, we tested whether noninvasive neurostimulation, specifically single-pulse or paired-pulse motor cortex transcranial magnetic stimulation (spTMS and ppTMS, respectively), coupled with measures of evoked motor response captures the pharmacodynamic effects of TAK-653 in rats and healthy humans. In the rat study, five escalating TAK-653 doses (0.1-50 mg/kg) or vehicle were administered to 31 adult male rats, while measures of cortical excitability were obtained by spTMS coupled with mechanomyography. Twenty additional rats were used to measure brain and plasma TAK-653 concentrations. The human study was conducted in 24 healthy volunteers (23 males, 1 female) to assess the impact on cortical excitability of 0.5 and 6 mg TAK-653 compared with placebo, measured by spTMS and ppTMS coupled with electromyography in a double-blind crossover design. Plasma TAK-653 levels were also measured. TAK-653 increased both the mechanomyographic response to spTMS in rats and the amplitude of motor-evoked potentials in humans at doses yielding similar plasma concentrations. TAK-653 did not affect resting motor threshold or paired-pulse responses in humans. This is the first report of a translational functional biomarker for AMPA receptor potentiation and indicates that TMS may be a useful translational platform to assess the pharmacodynamic profile of glutamate receptor modulators.


Asunto(s)
Trastorno Depresivo Mayor , Estimulación Magnética Transcraneal , Animales , Biomarcadores , Potenciales Evocados Motores , Femenino , Masculino , Ratas , Receptores AMPA
7.
Cereb Cortex ; 30(12): 6108-6120, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32676666

RESUMEN

Chronic symptoms indicating excess cortical excitability follow mild traumatic brain injury, particularly repetitive mild traumatic brain injury (rmTBI). Yet mechanisms underlying post-traumatic excitation/inhibition (E/I) ratio abnormalities may differ between the early and late post-traumatic phases. We therefore measured seizure threshold and cortical gamma-aminobutyric acid (GABA) and glutamate (Glu) concentrations, 1 and 6 weeks after rmTBI in mice. We also analyzed the structure of parvalbumin-positive interneurons (PVIs), their perineuronal nets (PNNs), and their electroencephalography (EEG) signature (gamma frequency band power). For mechanistic insight, we measured cortical oxidative stress, reflected in the reduced/oxidized glutathione (GSH/GSSG) ratio. We found that seizure susceptibility increased both early and late after rmTBI. However, whereas increased Glu dominated the E/I 1 week after rmTBI, Glu concentration normalized and the E/I was instead characterized by depressed GABA, reduced per-PVI parvalbumin expression, and reduced gamma EEG power at the 6-week post-rmTBI time point. Oxidative stress was increased early after rmTBI, where transient PNN degradation was noted, and progressed throughout the monitoring period. We conclude that GSH depletion, perhaps triggered by early Glu-mediated excitotoxicity, leads to late post-rmTBI loss of PVI-dependent cortical inhibitory tone. We thus propose dampening of Glu signaling, maintenance of redox state, and preservation of PVI inhibitory capacity as therapeutic targets for post-rmTBI treatment.


Asunto(s)
Conmoción Encefálica/complicaciones , Encéfalo/fisiopatología , Ácido Glutámico/metabolismo , Interneuronas/fisiología , Estrés Oxidativo , Convulsiones/fisiopatología , Ácido gamma-Aminobutírico/metabolismo , Animales , Encéfalo/metabolismo , Ritmo Gamma , Masculino , Ratones Endogámicos C57BL , Parvalbúminas/análisis , Convulsiones/etiología , Convulsiones/metabolismo
8.
Cereb Cortex ; 29(11): 4506-4518, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30590449

RESUMEN

Traumatic brain injury (TBI) results in a decrease in glutamate transporter-1 (GLT-1) expression, the major mechanism for glutamate removal from synapses. Coupled with an increase in glutamate release from dead and dying neurons, this causes an increase in extracellular glutamate. The ensuing glutamate excitotoxicity disproportionately damages vulnerable GABAergic parvalbumin-positive inhibitory interneurons, resulting in a progressively worsening cortical excitatory:inhibitory imbalance due to a loss of GABAergic inhibitory tone, as evidenced by chronic post-traumatic symptoms such as epilepsy, and supported by neuropathologic findings. This loss of intracortical inhibition can be measured and followed noninvasively using long-interval paired-pulse transcranial magnetic stimulation with mechanomyography (LI-ppTMS-MMG). Ceftriaxone, a ß-lactam antibiotic, is a potent stimulator of the expression of rodent GLT-1 and would presumably decrease excitotoxic damage to GABAergic interneurons. It may thus be a viable antiepileptogenic intervention. Using a rat fluid percussion injury TBI model, we utilized LI-ppTMS-MMG, quantitative PCR, and immunohistochemistry to test whether ceftriaxone treatment preserves intracortical inhibition and cortical parvalbumin-positive inhibitory interneuron function after TBI in rat motor cortex. We show that neocortical GLT-1 gene and protein expression are significantly reduced 1 week after TBI, and this transient loss is mitigated by ceftriaxone. Importantly, whereas intracortical inhibition declines progressively after TBI, 1 week of post-TBI ceftriaxone treatment attenuates the loss of inhibition compared to saline-treated controls. This finding is accompanied by significantly higher parvalbumin gene and protein expression in ceftriaxone-treated injured rats. Our results highlight prospects for ceftriaxone as an intervention after TBI to prevent cortical inhibitory interneuron dysfunction, partly by preserving GLT-1 expression.


Asunto(s)
Antibacterianos/administración & dosificación , Lesiones Traumáticas del Encéfalo/metabolismo , Ceftriaxona/administración & dosificación , Transportador 2 de Aminoácidos Excitadores/metabolismo , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Animales , Modelos Animales de Enfermedad , Expresión Génica , Masculino , Corteza Motora/fisiopatología , Parvalbúminas/metabolismo , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...