Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genomics ; 116(2): 110793, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38220132

RESUMEN

Single-cell RNA sequencing (scRNA-Seq) has emerged as a powerful tool for understanding cellular heterogeneity and function. However the choice of sample multiplexing reagents can impact data quality and experimental outcomes. In this study, we compared various multiplexing reagents, including MULTI-Seq, Hashtag antibody, and CellPlex, across diverse sample types such as human peripheral blood mononuclear cells (PBMCs), mouse embryonic brain and patient-derived xenografts (PDXs). We found that all multiplexing reagents worked well in cell types robust to ex vivo manipulation but suffered from signal-to-noise issues in more delicate sample types. We compared multiple demultiplexing algorithms which differed in performance depending on data quality. We find that minor improvements to laboratory workflows such as titration and rapid processing are critical to optimal performance. We also compared the performance of fixed scRNA-Seq kits and highlight the advantages of the Parse Biosciences kit for fragile samples. Highly multiplexed scRNA-Seq experiments require more sequencing resources, therefore we evaluated CRISPR-based destruction of non-informative genes to enhance sequencing value. Our comprehensive analysis provides insights into the selection of appropriate sample multiplexing reagents and protocols for scRNA-Seq experiments, facilitating more accurate and cost-effective studies.


Asunto(s)
Leucocitos Mononucleares , Análisis de la Célula Individual , Humanos , Animales , Ratones , RNA-Seq , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Algoritmos , Perfilación de la Expresión Génica/métodos
2.
PLoS One ; 7(10): e48424, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23110239

RESUMEN

Cancer vaccines are designed to expand tumor antigen-specific T cells with effector function. However, they may also inadvertently expand regulatory T cells (Treg), which could seriously hamper clinical efficacy. To address this possibility, we developed a novel assay to detect antigen-specific Treg based on down-regulation of surface CD3 following TCR engagement, and used this approach to screen for Treg specific to the NY-ESO-1 tumor antigen in melanoma patients treated with the NY-ESO-1/ISCOMATRIX™ cancer vaccine. All patients tested had Treg (CD25(bright) FoxP3(+) CD127(neg)) specific for at least one NY-ESO-1 epitope in the blood. Strikingly, comparison with pre-treatment samples revealed that many of these responses were induced or boosted by vaccination. The most frequently detected response was toward the HLA-DP4-restricted NY-ESO-1(157-170) epitope, which is also recognized by effector T cells. Notably, functional Treg specific for an HLA-DR-restricted epitope within the NY-ESO-1(115-132) peptide were also identified at high frequency in tumor tissue, suggesting that NY-ESO-1-specific Treg may suppress local anti-tumor immune responses. Together, our data provide compelling evidence for the ability of a cancer vaccine to expand tumor antigen-specific Treg in the setting of advanced cancer, a finding which should be given serious consideration in the design of future cancer vaccine clinical trials.


Asunto(s)
Vacunas contra el Cáncer/uso terapéutico , Melanoma/inmunología , Melanoma/terapia , Linfocitos T Reguladores/inmunología , Células Cultivadas , Epítopos/inmunología , Citometría de Flujo , Humanos , Leucocitos Mononucleares/metabolismo , Melanoma/patología
3.
J Immunol Methods ; 377(1-2): 56-61, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22265970

RESUMEN

Antigenic epitopes recognized by FoxP3(+) regulatory T cells (Treg) are poorly defined, largely due to a lack of assays for determining Treg specificity. We have developed a novel approach for detecting human Treg specific to peptide antigen, utilizing down-regulation of surface CD3 as a read-out of antigen recognition. Culture conditions and re-stimulation time have been optimized, allowing the detection of even very rare Treg, such as those specific to tumor antigens.


Asunto(s)
Epítopos de Linfocito T/inmunología , Citometría de Flujo/métodos , Linfocitos T Reguladores/inmunología , Presentación de Antígeno/inmunología , Complejo CD3/genética , Complejo CD3/inmunología , Regulación hacia Abajo/inmunología , Factores de Transcripción Forkhead/inmunología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...