Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Int J Radiat Biol ; 99(7): 994-1008, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36811500

RESUMEN

PURPOSE: A question echoed by the National Biodefense Science Board (NBSB) in 2010, remains a reasonable question in 2023; 'Where are the Countermeasures?'. A critical path for development of medical countermeasures (MCM) against acute, radiation-induced organ-specific injury within the acute radiation syndrome (ARS) and the delayed effects of acute radiation exposure (DEARE) requires the recognition of problems and solutions inherent in the path to FDA approval under the Animal Rule. Keep Rule number one in mind, It's not easy. CONSIDERATIONS: The current topic herein is focused on defining the nonhuman primate model(s) for efficient MCM development relative to consideration of prompt and delayed exposure in the context of the nuclear scenario. The rhesus macaque is a predictive model for human exposure of partial-body irradiation with marginal bone marrow sparing that allows definition of the multiple organ injury in the acute radiation syndrome (ARS) and the delayed effects of acute radiation exposure (DEARE). The continued definition of natural history is required to delineate an associative or causal interaction within the concurrent multi-organ injury characteristic of the ARS and DEARE. A more efficient development of organ specific MCM for both pre-exposure and post-exposure prophylaxis to include acute radiation-induced combined injury requires closing critical gaps in knowledge and urgent support to rectify the national shortage of nonhuman primates. The rhesus macaque is a validated, predictive model of the human response to prompt and delayed radiation exposure, medical management and MCM treatment. A rational approach to further development of the cynomolgus macaque as a comparable model is urgently required for continued development of MCM for FDA approval. CONCLUSION: It is imperative to examine the key variables relative to animal model development and validation, The pharmacokinetics, pharmacodynamics and exposure profiles, of candidate MCM relative to route, administration schedule and optimal efficacy define the fully effective dose. The conduct of adequate and well-controlled pivotal efficacy studies as well as safety and toxicity studies support approval under the FDA Animal Rule and label definition for human use.


Asunto(s)
Síndrome de Radiación Aguda , Contramedidas Médicas , Exposición a la Radiación , Animales , Humanos , Síndrome de Radiación Aguda/etiología , Modelos Animales de Enfermedad , Macaca mulatta , Exposición a la Radiación/efectos adversos , Exposición a la Radiación/análisis
2.
Int J Radiat Biol ; 99(7): 1119-1129, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36794325

RESUMEN

PURPOSE: To test IPW-5371 for the mitigation of the delayed effects of acute radiation exposure (DEARE). Survivors of acute radiation exposure are at risk for developing delayed multi-organ toxicities; however, there are no FDA-approved medical countermeasures (MCM) to mitigate DEARE. METHODS: WAG/RijCmcr female rat model of partial-body irradiation (PBI), by shielding part of one hind leg, was used to test IPW-5371 (7 and 20 mg kg-1 d-1) for mitigation of lung and kidney DEARE when started 15 d after PBI. Rats were fed known amounts of IPW-5371 using a syringe, instead of delivery by daily oral gavage, sparing exacerbation of esophageal injury by radiation. The primary endpoint, all-cause morbidity was assessed over 215 d. Secondary endpoints: body weight, breathing rate and blood urea nitrogen were also assessed. RESULTS: IPW-5371 enhanced survival (primary endpoint) as well as attenuated secondary endpoints of lung and kidney injuries by radiation. CONCLUSION: To provide a window for dosimetry and triage, as well as avoid oral delivery during the acute radiation syndrome (ARS), the drug regimen was started at 15 d after 13.5 Gy PBI. The experimental design to test mitigation of DEARE was customized for translation in humans, using an animal model of radiation that was designed to simulate a radiologic attack or accident. The results support advanced development of IPW-5371 to mitigate lethal lung and kidney injuries after irradiation of multiple organs.


Asunto(s)
Síndrome de Radiación Aguda , Traumatismos Experimentales por Radiación , Humanos , Ratas , Femenino , Animales , Traumatismos Experimentales por Radiación/prevención & control , Médula Ósea/efectos de la radiación , Dosis de Radiación , Pulmón/efectos de la radiación
3.
Radiat Res ; 198(3): 221-242, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35834823

RESUMEN

The hematopoietic system is highly sensitive to stress from both aging and radiation exposure, and the hematopoietic acute radiation syndrome (H-ARS) should be modeled in the geriatric context separately from young for development of age-appropriate medical countermeasures (MCMs). Here we developed aging murine H-ARS models, defining radiation dose response relationships (DRRs) in 12-month-old middle-aged and 24-month-old geriatric male and female C57BL/6J mice, and characterized diverse factors affecting geriatric MCM testing. Groups of approximately 20 mice were exposed to ∼10 different doses of radiation to establish radiation DRRs for estimation of the LD50/30. Radioresistance increased with age and diverged dramatically between sexes. The LD50/30 in young adult mice averaged 853 cGy and was similar between sexes, but increased in middle age to 1,005 cGy in males and 920 cGy in females, with further sex divergence in geriatric mice to 1,008 cGy in males but 842 cGy in females. Correspondingly, neutrophils, platelets, and functional hematopoietic progenitor cells were all increased with age and rebounded faster after irradiation. These effects were higher in aged males, and neutrophil dysfunction was observed in aged females. Upstream of blood production, hematopoietic stem cell (HSC) markers associated with age and myeloid bias (CD61 and CD150) were higher in geriatric males vs. females, and sex-divergent gene signatures were found in HSCs relating to cholesterol metabolism, interferon signaling, and GIMAP family members. Fluid intake per gram body weight decreased with age in males, and decreased after irradiation in all mice. Geriatric mice of substrain C57BL/6JN sourced from the National Institute on Aging were significantly more radiosensitive than C57BL/6J mice from Jackson Labs aged at our institution, indicating mouse source and substrain should be considered in geriatric radiation studies. This work highlights the importance of sex, vendor, and other considerations in studies relating to hematopoiesis and aging, identifies novel sex-specific functional and molecular changes in aging hematopoietic cells at steady state and after irradiation, and presents well-characterized aging mouse models poised for MCM efficacy testing for treatment of acute radiation effects in the elderly.


Asunto(s)
Síndrome de Radiación Aguda , Animales , Modelos Animales de Enfermedad , Femenino , Hematopoyesis/efectos de la radiación , Células Madre Hematopoyéticas/efectos de la radiación , Masculino , Ratones , Ratones Endogámicos C57BL , Tolerancia a Radiación
4.
IEEE Trans Med Imaging ; 41(3): 531-542, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34606451

RESUMEN

Computed Tomography (CT) plays an important role in monitoring radiation-induced Pulmonary Fibrosis (PF), where accurate segmentation of the PF lesions is highly desired for diagnosis and treatment follow-up. However, the task is challenged by ambiguous boundary, irregular shape, various position and size of the lesions, as well as the difficulty in acquiring a large set of annotated volumetric images for training. To overcome these problems, we propose a novel convolutional neural network called PF-Net and incorporate it into a semi-supervised learning framework based on Iterative Confidence-based Refinement And Weighting of pseudo Labels (I-CRAWL). Our PF-Net combines 2D and 3D convolutions to deal with CT volumes with large inter-slice spacing, and uses multi-scale guided dense attention to segment complex PF lesions. For semi-supervised learning, our I-CRAWL employs pixel-level uncertainty-based confidence-aware refinement to improve the accuracy of pseudo labels of unannotated images, and uses image-level uncertainty for confidence-based image weighting to suppress low-quality pseudo labels in an iterative training process. Extensive experiments with CT scans of Rhesus Macaques with radiation-induced PF showed that: 1) PF-Net achieved higher segmentation accuracy than existing 2D, 3D and 2.5D neural networks, and 2) I-CRAWL outperformed state-of-the-art semi-supervised learning methods for the PF lesion segmentation task. Our method has a potential to improve the diagnosis of PF and clinical assessment of side effects of radiotherapy for lung cancers.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Fibrosis Pulmonar , Animales , Procesamiento de Imagen Asistido por Computador/métodos , Pulmón/diagnóstico por imagen , Macaca mulatta , Fibrosis Pulmonar/diagnóstico por imagen , Fibrosis Pulmonar/etiología , Tomografía Computarizada por Rayos X
6.
Health Phys ; 121(4): 282-303, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34546213

RESUMEN

ABSTRACT: The dose response relationship and corresponding values for mid-lethal dose and slope are used to define the dose- and time-dependent parameters of the hematopoietic acute radiation syndrome. The characteristic time course of mortality, morbidity, and secondary endpoints are well defined. The concomitant comorbidities, potential mortality, and other multi-organ injuries that are similarly dose- and time-dependent are less defined. Determination of the natural history or pathophysiology associated with the lethal hematopoietic acute radiation syndrome is a significant gap in knowledge, especially when considered in the context of a nuclear weapon scenario. In this regard, the exposure is likely ill-defined, heterogenous, and nonuniform. These conditions forecast sparing of bone marrow and increased survival from the acute radiation syndrome consequent to threshold doses for the delayed effects of acute radiation exposure due to marrow sparing, medical management, and use of approved medical countermeasures. The intent herein is to provide a composite natural history of the pathophysiology concomitant with the evolution of the potentially lethal hematopoietic acute radiation syndrome derived from studies that focused on total body irradiation and partial body irradiation with bone marrow sparing. The marked differential in estimated LD50/60 from 7.5 Gy to 10.88 Gy for the total body irradiation and partial body irradiation with 5% bone marrow sparing models, respectively, provided a clear distinction between the attendant multiple organ injury and natural history of the two models that included medical management. Total body irradiation was focused on equivalent LD50/60 exposures. The 10 Gy and 11 Gy partial body with 5% bone marrow sparing exposures bracketed the LD50/60 (10.88 Gy). The incidence, progression, and duration of multiple organ injury was described for each exposure protocol within the hematopoietic acute radiation syndrome. The higher threshold doses for the partial body irradiation with bone marrow sparing protocol induced a marked degree of multiple organ injury to include lethal gastrointestinal acute radiation syndrome, prolonged crypt loss and mucosal damage, immune suppression, acute kidney injury, body weight loss, and added clinical comorbidities that defined a complex timeline of organ injury through the acute hematopoietic acute radiation syndrome. The natural history of the acute radiation syndrome presents a 60-d time segment of multi-organ sequelae that is concomitant with the latent period or time to onset of the evolving multi-organ injury of the delayed effects of acute radiation exposure.


Asunto(s)
Síndrome de Radiación Aguda , Síndrome de Radiación Aguda/diagnóstico , Síndrome de Radiación Aguda/etiología , Animales , Médula Ósea/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Macaca mulatta , Irradiación Corporal Total/efectos adversos
7.
Health Phys ; 121(4): 345-351, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34546216

RESUMEN

ABSTRACT: Near total body exposure to high-dose ionizing radiation results in organ-specific sequelae, including acute radiation syndromes and delayed effects of acute radiation exposure. Among these sequelae are acute kidney injury and chronic kidney injury. Reports that neither oxidative stress nor inflammation are dominant mechanisms defining radiation nephropathy inspired an unbiased, discovery-based proteomic interrogation in order to identify mechanistic pathways of injury. We quantitatively profiled the proteome of kidney from non-human primates following 12 Gy partial body irradiation with 2.5% bone marrow sparing over a time period of 3 wk. Kidney was analyzed by liquid chromatography-tandem mass spectrometry. Out of the 3,432 unique proteins that were identified, we found that 265 proteins showed significant and consistent responses across at least three time points post-irradiation, of which 230 proteins showed strong upregulation while 35 proteins showed downregulation. Bioinformatics analysis revealed significant pathway and upstream regulator perturbations post-high dose irradiation and shed light on underlying mechanisms of radiation damage. These data will be useful for a greater understanding of the molecular mechanisms of injury in well-characterized animal models of partial body irradiation with minimal bone marrow sparing. These data may be potentially useful in the future development of medical countermeasures.


Asunto(s)
Síndrome de Radiación Aguda , Traumatismos Experimentales por Radiación , Síndrome de Radiación Aguda/diagnóstico , Síndrome de Radiación Aguda/etiología , Síndrome de Radiación Aguda/metabolismo , Animales , Médula Ósea/efectos de la radiación , Riñón/efectos de la radiación , Macaca mulatta , Proteómica , Traumatismos Experimentales por Radiación/etiología , Traumatismos Experimentales por Radiación/metabolismo
8.
Health Phys ; 121(4): 331-344, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34546215

RESUMEN

ABSTRACT: To study the molecular and cellular mechanisms of radiation-induced lung injury (RILI) in a non-human primate model, Rhesus macaques were irradiated with lethal doses of radiation to the whole thorax. A subset of the irradiated animals was treated with AEOL 10150, a potent catalytic scavenger of reactive oxygen and nitrogen species. Lung tissues were collected at necropsy for molecular and immunohistochemical (IHC) studies. Microarray expression profiling in the irradiated lung tissues identified differentially expressed genes (DEGs) and pathways important in innate immunity. The elevated expression of cytokines (CCL2, CCL11, IL-8), complement factors (CFB, C3), apoptosis-related molecules (p53, PTEN, Bax, p21, MDM2, c-Caspase 3), and adhesion molecules (fibronectin, integrin ß6, ICAM-1) were further studied using real-time PCR, Western blot, or IHC. Oxidative stress and pulmonary inflammatory cell infiltration were increased in the irradiated lungs. Treatment with AEOL 10150 significantly decreased oxidative stress and monocyte/macrophage infiltration. Cytokine/chemokine-induced excessive innate immune response after thoracic irradiation plays an important role in RILI. To our knowledge, this is the first study to highlight the role of cytokine/chemokine-induced innate immune responses in radiation-induced pulmonary toxicity in a NHP model.


Asunto(s)
Pulmón , Tórax , Animales , Inmunidad Innata , Pulmón/efectos de la radiación , Macaca mulatta , Metaloporfirinas , Tórax/efectos de la radiación
9.
Health Phys ; 121(4): 304-330, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34546214

RESUMEN

ABSTRACT: Medical countermeasure development under the US Food and Drug Administration animal rule requires validated animal models of acute radiation effects. The key large animal model is the non-human primate, rhesus macaque. To date, only the rhesus macaque has been used for both critical supportive data and pivotal efficacy trials seeking US Food and Drug Administration approval. The potential for use of the rhesus for other high priority studies such as vaccine development underscores the need to identify another non-human primate model to account for the current lack of rhesus for medical countermeasure development. The cynomolgus macaque, Macaca fascicularis, has an existing database of medical countermeasure development against the hematopoietic acute radiation syndrome, as well as the use of radiation exposure protocols that mimic the likely nonuniform and heterogenous exposure consequent to a nuclear terrorist event. The review herein describes published studies of adult male cynomolgus macaques that used two exposure protocols-unilateral, nonuniform total-body irradiation and partial-body irradiation with bone marrow sparing-with the administration of subject-based medical management to assess mitigation against the hematopoietic acute radiation syndrome. These studies assessed the efficacy of cytokine combinations and cell-based therapy to mitigate acute radiation-induced myelosuppression. Both therapeutics were shown to mitigate the myelosuppression of the hematopoietic acute radiation syndrome. Additional studies being presented herein further defined the dose-dependent hematopoietic acute radiation syndrome of cynomolgus and rhesus macaques and a differential dose-dependent effect with young male and female cynomolgus macaques. The database supports the investigation of the cynomolgus macaque as a comparable non-human primate for efficacy testing under the US Food and Drug Administration animal rule. Critical gaps in knowledge required to validate the models and exposure protocols are also identified.


Asunto(s)
Síndrome de Radiación Aguda , Contramedidas Médicas , Exposición a la Radiación , Síndrome de Radiación Aguda/etiología , Síndrome de Radiación Aguda/prevención & control , Animales , Femenino , Macaca fascicularis , Macaca mulatta , Masculino , Exposición a la Radiación/efectos adversos
10.
Health Phys ; 121(4): 352-371, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34546217

RESUMEN

ABSTRACT: High-dose radiation exposure results in hematopoietic and gastrointestinal acute radiation syndromes followed by delayed effects of acute radiation exposure, which encompasses multiple organs, including heart, kidney, and lung. Here we sought to further characterize the natural history of radiation-induced heart injury via determination of differential protein and metabolite expression in the heart. We quantitatively profiled the proteome and metabolome of left and right ventricle from non-human primates following 12 Gy partial body irradiation with 2.5% bone marrow sparing over a time period of 3 wk. Global proteome profiling identified more than 2,200 unique proteins, with 220 and 286 in the left and right ventricles, respectively, showing significant responses across at least three time points compared to baseline levels. High-throughput targeted metabolomics analyzed a total of 229 metabolites and metabolite combinations, with 18 and 22 in the left and right ventricles, respectively, showing significant responses compared to baseline levels. Bioinformatic analysis performed on metabolomic and proteomic data revealed pathways related to inflammation, energy metabolism, and myocardial remodeling were dysregulated. Additionally, we observed dysregulation of the retinoid homeostasis pathway, including significant post-radiation decreases in retinoic acid, an active metabolite of vitamin A. Significant differences between left and right ventricles in the pathology of radiation-induced injury were identified. This multi-omic study characterizes the natural history and molecular mechanisms of radiation-induced heart injury in NHP exposed to PBI with minimal bone marrow sparing.


Asunto(s)
Síndrome de Radiación Aguda , Médula Ósea , Primates , Proteómica , Traumatismos por Radiación , Síndrome de Radiación Aguda/patología , Animales , Médula Ósea/efectos de la radiación , Dosis de Radiación , Traumatismos por Radiación/metabolismo
11.
Health Phys ; 121(4): 384-394, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34546219

RESUMEN

ABSTRACT: Radiation-induced lung injury is a delayed effect of acute radiation exposure resulting in pulmonary pneumonitis and fibrosis. Molecular mechanisms that lead to radiation-induced lung injury remain incompletely understood. Using a non-human primate model of partial body irradiation with minimal bone marrow sparing, lung was analyzed from animals irradiated with 12 Gy at timepoints every 4 d up to 21 d after irradiation and compared to non-irradiated (sham) controls. Tryptic digests of lung tissues were analyzed by liquid chromatography-tandem mass spectrometry followed by pathway analysis. Out of the 3,101 unique proteins that were identified, we found that 252 proteins showed significant and consistent responses across at least three time points post-irradiation, of which 215 proteins showed strong up-regulation while 37 proteins showed down-regulation. Canonical pathways affected by irradiation, changes in proteins that serve as upstream regulators, and proteins involved in key processes including inflammation, fibrosis, and retinoic acid signaling were identified. The proteomic profiling of lung conducted here represents an untargeted systems biology approach to identify acute molecular events in the non-human primate lung that could potentially be initiating events for radiation-induced lung injury.


Asunto(s)
Traumatismos Experimentales por Radiación , Neumonitis por Radiación , Animales , Médula Ósea/efectos de la radiación , Pulmón/metabolismo , Primates , Proteómica , Traumatismos Experimentales por Radiación/etiología , Traumatismos Experimentales por Radiación/metabolismo
12.
Health Phys ; 121(4): 395-405, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34546220

RESUMEN

ABSTRACT: Exposure to ionizing radiation following a nuclear or radiological incident results in potential acute radiation syndromes causing sequelae of multi-organ injury in a dose- and time-dependent manner. Currently, medical countermeasures against radiation injury are limited, and no biomarkers have been approved by regulatory authorities. Identification of circulating plasma biomarkers indicative of radiation injury can be useful for early triage and injury assessment and in the development of novel therapies (medical countermeasures). Aims of this study are to (1) identify metabolites and lipids with consensus signatures that can inform on mechanism of injury in radiation-induced multi-organ injury and (2) identify plasma biomarkers in non-human primate (NHP) that correlate with tissues (kidney, liver, lung, left and right heart, jejunum) indicative of radiation injury, assessing samples collected over 3 wk post-exposure to 12 Gy partial body irradiation with 2.5% bone marrow sparing. About 180 plasma and tissue metabolites and lipids were quantified through Biocrates AbsoluteIDQ p180 kit using liquid chromatography and mass spectrometry. System-wide perturbations of specific metabolites and lipid levels and pathway alterations were identified. Citrulline, Serotonin, PC ae 38:2, PC ae 36:2, and sum of branched chain amino acids were identified as potential biomarkers of radiation injury. Pathway analysis revealed consistent changes in fatty acid oxidation and metabolism and perturbations in multiple other pathways.


Asunto(s)
Síndrome de Radiación Aguda , Síndrome de Radiación Aguda/diagnóstico , Síndrome de Radiación Aguda/etiología , Animales , Biomarcadores , Macaca mulatta , Metabolómica , Dosis de Radiación , Radiación Ionizante
13.
Health Phys ; 121(4): 372-383, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34546218

RESUMEN

ABSTRACT: Radiation sequelae is complex and characterized by multiple pathologies, which occur over time and nonuniformly throughout different organs. The study of the mesenteric lymph node (MLN) due to its importance in the gastrointestinal system is of particular interest. Other studies have shown an immediate post-irradiation reduction in cellularity due to the known effects of irradiation on lymphoid cell populations, but the molecular and functional mechanisms that lead to these cellular alterations remain limited. In this work, we show the use of lipidomic, proteomic, and mass spectrometry imaging in the characterization of the effects of acute radiation exposure on the MLN at different time points after ionizing radiation (IR) from 4 d to 21 d after 12 Gy partial body irradiation with 2.5% bone marrow sparing. The combined analyses showed a dysregulation of the lipid and protein composition in the MLN after IR. Protein expression was affected in numerous pathways, including pathways regulating lipids such as LXR/RXR activation and acute phase response. Lipid distribution and abundance was also affected by IR in the MLN, including an accumulation of triacylglycerides, a decrease in polyunsaturated glycerophospholipids, and changes in polyunsaturated fatty acids. Those changes were observed as early as 4 d after IR and were more pronounced for lipids with a higher concentration in the nodules and the medulla of the MLN. These results provide molecular insight into the MLN that can inform on injury mechanism in a non-human primate model of the acute radiation syndrome of the gastrointestinal tract. Those findings may contribute to the identification of therapeutic targets and the development of new medical countermeasures.


Asunto(s)
Médula Ósea , Traumatismos Experimentales por Radiación , Animales , Médula Ósea/efectos de la radiación , Lipidómica , Ganglios Linfáticos/patología , Macaca mulatta , Espectrometría de Masas , Proteómica , Traumatismos Experimentales por Radiación/patología
14.
Health Phys ; 121(4): 406-418, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34546221

RESUMEN

ABSTRACT: High-dose radiation exposure results in hematopoietic (H) and gastrointestinal (GI) acute radiation syndromes (ARS) followed by delayed effects of acute radiation exposure (DEARE), which include damage to lung, heart, and GI. Whereas DEARE includes inflammation and fibrosis in multiple tissues, the molecular mechanisms contributing to inflammation and to the development of fibrosis remain incompletely understood. Reports that radiation dysregulates retinoids and proteins within the retinoid pathway indicate that radiation disrupts essential nutrient homeostasis. An active metabolite of vitamin A, retinoic acid (RA), is a master regulator of cell proliferation, differentiation, and apoptosis roles in inflammatory signaling and the development of fibrosis. As facets of inflammation and fibrosis are regulated by RA, we surveyed radiation-induced changes in retinoids as well as proteins related to and targets of the retinoid pathway in the non-human primate after high dose radiation with minimal bone marrow sparing (12 Gy PBI/BM2.5). Retinoic acid was decreased in plasma as well as in lung, heart, and jejunum over time, indicating a global disruption of RA homeostasis after IR. A number of proteins associated with fibrosis and with RA were significantly altered after radiation. Together these data indicate that a local deficiency of endogenous RA presents a permissive environment for fibrotic transformation.


Asunto(s)
Médula Ósea , Retinoides , Animales , Médula Ósea/efectos de la radiación , Homeostasis , Nutrientes , Primates/metabolismo , Retinoides/metabolismo , Tretinoina/farmacología
15.
Health Phys ; 121(4): 419-433, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34546222

RESUMEN

ABSTRACT: The goal of this study was to develop rat models of partial body irradiation with bone-marrow sparing (leg-out PBI) to test medical countermeasures (MCM) of both acute radiation syndrome (ARS) and delayed effects of acute radiation exposure (DEARE) under the FDA animal rule. The leg-out PBI models were developed in female and male WAG/RijCmcr rats at doses of 12.5-14.5 Gy. Rats received supportive care consisting of fluids and antibiotics. Gastrointestinal ARS (GI-ARS) was assessed by lethality to d 7 and diarrhea scoring to d 10. Differential blood counts were analyzed between d 1-42 for the natural history of hematopoietic ARS (H-ARS). Lethality and breathing intervals (BI) were measured between d 28-110 to assess delayed injury to the lung (L-DEARE). Kidney injury (K-DEARE) was evaluated by measuring elevation of blood urea nitrogen (BUN) between d 90-180. The LD50/30, including both lethality from GI-ARS and H-ARS, for female and male rats are 14.0 Gy and 13.5 Gy, respectively, while the LD50/7 for only GI-ARS are 14.3 Gy and 13.6 Gy, respectively. The all-cause mortalities, including ARS and L-DEARE, through 120 d (LD50/120) are 13.5 Gy and 12.9 Gy, respectively. Secondary end points confirmed occurrence of four distinct sequelae representing GI, hematopoietic, lung, and kidney toxicities after leg-out PBI. Adult rat models of leg-out PBI showed the acute and long-term sequelae of radiation damage that has been reported in human radiation exposure case studies. Sex-specific differences were observed in the DRR between females and males. These rat models are among the most useful for the development and approval of countermeasures for mitigation of radiation injuries under the FDA animal rule.


Asunto(s)
Síndrome de Radiación Aguda , Sistema Hematopoyético , Contramedidas Médicas , Exposición a la Radiación , Traumatismos Experimentales por Radiación , Síndrome de Radiación Aguda/tratamiento farmacológico , Síndrome de Radiación Aguda/etiología , Síndrome de Radiación Aguda/prevención & control , Animales , Médula Ósea/efectos de la radiación , Femenino , Masculino , Traumatismos Experimentales por Radiación/complicaciones , Traumatismos Experimentales por Radiación/prevención & control , Ratas
16.
J Radiol Prot ; 41(4)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34433144

RESUMEN

Recent advances in medical countermeasures (MCMs) has been dependent on the Food and Drug Administration (FDA) animal rule (AR) and the final guidance document provided for industry on product development. The criteria outlined therein establish the path for approval under the AR. The guidance document, along with the funding and requirements from the federal agencies provided the basic considerations for animal model development in assessing radiation effects and efficacy against the potential lethal effects of acute radiation injury and the delayed effects of acute exposure. Animal models, essential for determining MCM efficacy, were developed and validated to assess organ-specific, potentially lethal, radiation effects against the gastrointestinal (GI) and hematopoietic acute radiation syndrome (H-ARS), and radiation-induced delayed effects to lung and associated comorbidities of prolonged immune suppression, GI, kidney and heart injury. Partial-body irradiation models where marginal bone marrow was spared resulted in the ability to evaluate the concomitant evolution of multiple organ injury in the acute and delayed effects in survivors of acute radiation exposure. There are no MCMs for prophylaxis against the major sequelae of the ARS or the delayed effects of acute exposure. Also lacking are MCMs that will mitigate the GI ARS consequent to potentially lethal exposure from a terrorist event or major radiation accident. Additionally, the gap in countermeasures for prophylaxis may extend to mixed neutron/gamma radiation if current modelling predicts prompt exposure from an improvised nuclear device. However, progress in the field of MCM development has been made due to federal and corporate funding, clarification of the critical criteria for efficacy within the FDA AR and the concomitant development and validation of additional animal models. These models provided for a strategic and tactical approach to determine radiation effects and MCM efficacy.


Asunto(s)
Síndrome de Radiación Aguda , Contramedidas Médicas , Liberación de Radiactividad Peligrosa , Síndrome de Radiación Aguda/prevención & control , Animales , Modelos Animales de Enfermedad , Estados Unidos , United States Food and Drug Administration
17.
Radiat Res ; 195(4): 307-323, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33577641

RESUMEN

Medical countermeasures (MCMs) for hematopoietic acute radiation syndrome (H-ARS) should be evaluated in well-characterized animal models, with consideration of at-risk populations such as pediatrics. We have developed pediatric mouse models of H-ARS and delayed effects of acute radiation exposure (DEARE) for efficacy testing of MCMs against radiation. Male and female C57BL/6J mice aged 3, 4, 5, 6, 7 and 8 weeks old (±1 day) were characterized for baseline hematopoietic and gastrointestinal parameters, radiation response, efficacy of a known MCM, and DEARE at six and 12 months after total-body irradiation (TBI). Weanlings (age 3 weeks) were the most radiosensitive age group with an estimated LD50/30 of 712 cGy, while mice aged 4 to 8 weeks were more radioresistant with an estimated LD50/30 of 767-787 cGy. Female weanlings were more radiosensitive than males at 3 and 4 weeks old but became significantly more radioresistant after the pubertal age of 5 weeks. The most dramatic increase in body weight, RBC counts and intestinal circumference length occurred from 3 to 5 weeks of age. The established radiomitigator Neulasta® (pegfilgrastim) significantly increased 30-day survival in all age groups, validating these models for MCM efficacy testing. Analyses of DEARE among pediatric survivors revealed depressed weight gain in males six months post-TBI, and increased blood urea nitrogen at 12 months post-TBI which was more severe in females. Hematopoietic DEARE at six months post-TBI appeared to be less severe in survivors from the 3- and 4-week-old groups but was equally severe in all age groups by 12 months of age. Similar to our other acute radiation mouse models, there was no appreciable effect of Neulasta used as an H-ARS MCM on the severity of DEARE. In summary, these data characterize a pediatric mouse model useful for assessing the efficacy of MCMs against ARS and DEARE in children.


Asunto(s)
Síndrome de Radiación Aguda/tratamiento farmacológico , Filgrastim/farmacología , Sistema Hematopoyético/efectos de los fármacos , Polietilenglicoles/farmacología , Tolerancia a Radiación/efectos de los fármacos , Síndrome de Radiación Aguda/etiología , Síndrome de Radiación Aguda/fisiopatología , Animales , Modelos Animales de Enfermedad , Sistema Hematopoyético/fisiopatología , Sistema Hematopoyético/efectos de la radiación , Humanos , Ratones , Pediatría , Tolerancia a Radiación/efectos de la radiación , Irradiación Corporal Total/efectos adversos
18.
Health Phys ; 119(5): 559-587, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33009295

RESUMEN

The nonhuman primate, rhesus macaque, is a relevant animal model that has been used to determine the efficacy of medical countermeasures to mitigate major signs of morbidity and mortality of radiation-induced lung injury. Herein, a literature review of published studies showing the evolution of lethal lung injury characteristic of the delayed effects of acute radiation exposure between the two significantly different exposure protocols, whole thorax lung irradiation and partial-body irradiation with bone marrow sparing in the nonhuman primate, is provided. The selection of published data was made from the open literature. The primary studies conducted at two research sites benefitted from the similarity of major variables; namely, both sites used rhesus macaques of approximate age and body weight and radiation exposure by LINAC-derived 6 MV photons at dose rates of 0.80 Gy min and 1.00 Gy min delivered to the midline tissue via bilateral, anterior/posterior, posterior/anterior geometry. An advantage relative to sex difference resulted from the use of male and female macaques by the Maryland and the Washington sites, respectively. Subject-based medical management was used for all macaques. The primary studies (6) provided adequate data to establish dose response relationships within 180 d for the radiation-induced lung injury consequent to whole thorax lung irradiation (male vs. female) and partial-body irradiation with bone marrow sparing exposure protocols (male). The dose response relationships established by probit analyses vs. linear dose relationships were characterized by two main parameters or dependent variables, a slope and LD50/180. Respective LD50/180 values for the primary studies that used whole thorax lung irradiation for respective male and female nonhuman primates were 10.24 Gy [9.87, 10.52] (n = 76, male) and 10.28 Gy [9.68, 10.92] (n = 40, female) at two different research sites. The respective slopes were steep at 1.73 [0.841, 2.604] and 1.15 [0.65, 1.65] probits per linear dose. The LD50/180 value and slope derived from the dose response relationships for the partial-body irradiation with bone marrow sparing exposure was 9.94 Gy [9.35, 10.29] (n = 87) and 1.21 [0.70, 1.73] probits per linear dose. A secondary study (1) provided data on limited control cohort of nonhuman primates exposed to whole thorax lung irradiation. The data supported the incidence of clinical, radiographic, and histological indices of the dose-dependent lung injury in the nonhuman primates. Tertiary studies (6) provided data derived from collaboration with the noted primary and secondary studies on control cohorts of nonhuman primates exposed to whole thorax lung irradiation and partial-body irradiation with bone marrow sparing exposure. These studies provided a summary of histological evidence of fibrosis, inflammation and reactive/proliferative changes in pneumonocytes characteristic of lung injury and data on biomarkers for radiation-induced lung injury based on matrix-assisted laser desorption ionization-mass spectrometry imaging and gene expression approaches. The available database in young rhesus macaques exposed to whole thorax lung irradiation or partial-body irradiation with bone marrow sparing using 6 MV LINAC-derived radiation with medical management showed that the dose response relationships were equivalent relative to the primary endpoint all-cause mortality. Additionally, the latency, incidence, severity, and progression of the clinical, radiographic, and histological indices of lung injury were comparable. However, the differences between the exposure protocols are remarkable relative to the demonstrated time course between the multiple organ injury of the acute radiation syndrome and that of the delayed effects of acute radiation exposure, respectively.


Asunto(s)
Síndrome de Radiación Aguda/complicaciones , Médula Ósea/patología , Lesión Pulmonar/mortalidad , Tratamientos Conservadores del Órgano/métodos , Exposición a la Radiación/efectos adversos , Traumatismos Experimentales por Radiación/mortalidad , Tórax/patología , Animales , Médula Ósea/efectos de la radiación , Comorbilidad , Modelos Animales de Enfermedad , Lesión Pulmonar/etiología , Lesión Pulmonar/patología , Mortalidad/tendencias , Primates , Traumatismos Experimentales por Radiación/etiología , Traumatismos Experimentales por Radiación/patología , Tórax/efectos de la radiación
20.
Health Phys ; 119(5): 527-558, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32947486

RESUMEN

A systematic review of relevant studies that determined the dose response relationship (DRR) for the hematopoietic (H) acute radiation syndrome (ARS) in the canine relative to radiation quality of mixed neutron:gamma radiations, dose rate, and exposure uniformity relative to selected reference radiation exposure has not been performed. The datasets for rhesus macaques exposure to mixed neutron:gamma radiation are used herein as a species comparative reference to the canine database. The selection of data cohorts was made from the following sources: Ovid Medline (1957-present), PubMed (1954-present), AGRICOLA (1976-present), Web of Science (1954-present), and US HHS RePORT (2002-present). The total number of hits across all search sites was 3,077. Several referenced, unpublished, non-peer reviewed government reports were unavailable for review. Primary published studies using canines, beagles, and mongrels were evaluated to provide an informative and consistent review of mixed neutron:gamma radiation effects to establish the DRRs for the H-ARS. Secondary and tertiary studies provided additional information on the hematologic response or the effects on hematopoietic progenitor cells, radiation dosimetry, absorbed dose, and organ dose. The LD50/30 values varied with neutron quality, exposure aspect, and mixed neutron:gamma ratio. The reference radiation quality varied from 250 kVp or 1-2 MeV x radiation and Co gamma radiation. A summary of a published review of a data set describing the DRR in rhesus macaques for mixed neutron:gamma radiation exposure in the H-ARS is included for a comparative reference to the canine dataset. The available evidence provided a reliable and extensive database that characterized the DRR for the H-ARS in canines and young rhesus macaques exposed to mixed neutron:gamma radiations of variable energy relative to 250 kVp, 1-2 MeV x radiation and Co gamma, and uniform and non-uniform total-body irradiation without the benefit of medical management. The mixed neutron:gamma radiation showed an energy-dependent RBE of ~ 1.0 to 2.0 relative to reference radiation exposure within both species. A marginal database described the DRR for the gastrointestinal (GI)-ARS. Medical management showed benefit in both species relative to the mixed neutron:gamma as well as exposure to reference radiation. The DRR for the H-ARS was characterized by steep slopes and relative LD50/30 values that reflected the radiation quality, exposure aspect, and dose rate over a range in time from 1956-2012.


Asunto(s)
Síndrome de Radiación Aguda/patología , Rayos gamma/efectos adversos , Células Madre Hematopoyéticas/patología , Neutrones/efectos adversos , Exposición a la Radiación/efectos adversos , Síndrome de Radiación Aguda/etiología , Animales , Perros , Relación Dosis-Respuesta en la Radiación , Células Madre Hematopoyéticas/efectos de la radiación , Primates , Exposición a la Radiación/normas , Estándares de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...