Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Geobiology ; 21(6): 791-803, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37721188

RESUMEN

Biogeochemical sulfur cycling in sulfidic karst systems is largely driven by abiotic and biological sulfide oxidation, but the fate of elemental sulfur (S0 ) that accumulates in these systems is not well understood. The Frasassi Cave system (Italy) is intersected by a sulfidic aquifer that mixes with small quantities of oxygen-rich meteoric water, creating Proterozoic-like conditions and supporting a prolific ecosystem driven by sulfur-based chemolithoautotrophy. To better understand the cycling of S0 in this environment, we examined the geochemistry and microbiology of sediments underlying widespread sulfide-oxidizing mats dominated by Beggiatoa. Sediment populations were dominated by uncultivated relatives of sulfur cycling chemolithoautotrophs related to Sulfurovum, Halothiobacillus, Thiofaba, Thiovirga, Thiobacillus, and Desulfocapsa, as well as diverse uncultivated anaerobic heterotrophs affiliated with Bacteroidota, Anaerolineaceae, Lentimicrobiaceae, and Prolixibacteraceae. Desulfocapsa and Sulfurovum populations accounted for 12%-26% of sediment 16S rRNA amplicon sequences and were closely related to isolates which carry out autotrophic S0 disproportionation in pure culture. Gibbs energy (∆Gr ) calculations revealed that S0 disproportionation under in situ conditions is energy yielding. Microsensor profiles through the mat-sediment interface showed that Beggiatoa mats consume dissolved sulfide and oxygen, but a net increase in acidity was only observed in the sediments below. Together, these findings suggest that disproportionation is an important sink for S0 generated by microbial sulfide oxidation in this oxygen-limited system and may contribute to the weathering of carbonate rocks and sediments in sulfur-rich environments.

3.
Microbiol Resour Announc ; 12(5): e0128022, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37014219

RESUMEN

Here, we report 7 metagenome-assembled genomes (MAGs) isolated from acid mine drainage sites in the eastern United States. Three genomes are Archaea, including two from the phylum Thermoproteota and one from Euryarchaeota. Four genomes are bacterial, with one from the phylum Candidatus Eremiobacteraeota (formerly WPS-2), one from Acidimicrobiales (Actinobacteria), and two from Gallionellaceae (Proteobacteria).

4.
Appl Environ Microbiol ; 89(1): e0157522, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36602326

RESUMEN

Acidophilic bacteria and archaea inhabit extreme geochemical "islands" that can tell us when and how geographic barriers affect the biogeography of microorganisms. Here, we describe microbial communities from extremely acidic (pH 0 to 1) biofilms, known as snottites, from hydrogen sulfide-rich caves. Given the extreme acidity and subsurface location of these biofilms, and in light of earlier work showing strong geographic patterns among snottite Acidithiobacillus populations, we investigated their structure and diversity in order to understand how geography might impact community assembly. We used 16S rRNA gene cloning and fluorescence in situ hybridization (FISH) to investigate 26 snottite samples from four sulfidic caves in Italy and Mexico. All samples had very low biodiversity and were dominated by sulfur-oxidizing bacteria in the genus Acidithiobacillus. Ferroplasma and other archaea in the Thermoplasmatales ranged from 0 to 50% of total cells, and relatives of the bacterial genera Acidimicrobium and Ferrimicrobium were up to 15% of total cells. Rare phylotypes included Sulfobacillus spp. and members of the phyla "Candidatus Dependentiae" and "Candidatus Saccharibacteria" (formerly TM6 and TM7). Although the same genera of acidophiles occurred in snottites on separate continents, most members of those genera represent substantially divergent populations, with 16S rRNA genes that are only 95 to 98% similar. Our findings are consistent with a model of community assembly where sulfidic caves are stochastically colonized by microorganisms from local sources, which are strongly filtered through environmental selection for extreme acid tolerance, and these different colonization histories are maintained by dispersal restrictions within and among caves. IMPORTANCE Microorganisms that are adapted to extremely acidic conditions, known as extreme acidophiles, are catalysts for rock weathering, metal cycling, and mineral formation in naturally acidic environments. They are also important drivers of large-scale industrial processes such as biomining and contaminant remediation. Understanding the factors that govern their ecology and distribution can help us better predict and utilize their activities in natural and engineered systems. However, extremely acidic habitats are unusual in that they are almost always isolated within circumneutral landscapes. So where did their acid-adapted inhabitants come from, and how do new colonists arrive and become established? In this study, we took advantage of a unique natural experiment in Earth's subsurface to show how isolation may have played a role in the colonization history, community assembly, and diversity of highly acidic microbial biofilms.


Asunto(s)
Acidithiobacillus , Bacterias , ARN Ribosómico 16S/genética , Hibridación Fluorescente in Situ , Archaea/genética , Biopelículas , Acidithiobacillus/genética , Filogenia
5.
ISME J ; 16(12): 2666-2679, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36123522

RESUMEN

Cueva de la Mora is a permanently stratified acidic pit lake and a model system for extreme acid mine drainage (AMD) studies. Using a combination of amplicon sequencing, metagenomics and metatranscriptomics we performed a taxonomically resolved analysis of microbial contributions to carbon, sulfur, iron, and nitrogen cycling. We found that active green alga Coccomyxa onubensis dominated the upper layer and chemocline. The chemocline had activity for iron(II) oxidation carried out by populations of Ca. Acidulodesulfobacterium, Ferrovum, Leptospirillium, and Armatimonadetes. Predicted activity for iron(III) reduction was only detected in the deep layer affiliated with Proteobacteria. Activity for dissimilatory nitrogen cycling including nitrogen fixation and nitrate reduction was primarily predicted in the chemocline. Heterotrophic archaeal populations with predicted activity for sulfide oxidation related to uncultured Thermoplasmatales dominated in the deep layer. Abundant sulfate-reducing Desulfomonile and Ca. Acidulodesulfobacterium populations were active in the chemocline. In the deep layer, uncultured populations from the bacterial phyla Actinobacteria, Chloroflexi, and Nitrospirae contributed to both sulfate reduction and sulfide oxidation. Based on this information we evaluated the potential for sulfide mineral precipitation in the deep layer as a tool for remediation. We argue that sulfide precipitation is not limited by microbial genetic potential but rather by the quantity and quality of organic carbon reaching the deep layer as well as by oxygen additions to the groundwater enabling sulfur oxidation. Addition of organic carbon and elemental sulfur should stimulate sulfate reduction and limit reoxidation of sulfide minerals.


Asunto(s)
Hierro , Lagos , Lagos/microbiología , Carbono , Azufre , Bacterias/genética , Sulfatos , Ácidos , Sulfuros , Oxidación-Reducción , Nitrógeno
6.
Front Bioeng Biotechnol ; 10: 867321, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910036

RESUMEN

Cueva de la Mora is a permanently stratified acidic pit lake with extremely high concentrations of heavy metals at depth. In order to evaluate the potential for in situ sulfide production, we characterized the microbial community in the deep layer using metagenomics and metatranscriptomics. We retrieved 18 high quality metagenome-assembled genomes (MAGs) representing the most abundant populations. None of the MAGs were closely related to either cultured or non-cultured organisms from the Genome Taxonomy or NCBI databases (none with average nucleotide identity >95%). Despite oxygen concentrations that are consistently below detection in the deep layer, some archaeal and bacterial MAGs mapped transcripts of genes for sulfide oxidation coupled with oxygen reduction. Among these microaerophilic sulfide oxidizers, mixotrophic Thermoplasmatales archaea were the most numerous and represented 24% of the total community. Populations associated with the highest predicted in situ activity for sulfate reduction were affiliated with Actinobacteria, Chloroflexi, and Nitrospirae phyla, and together represented about 9% of the total community. These MAGs, in addition to a less abundant Proteobacteria MAG in the genus Desulfomonile, contained transcripts of genes in the Wood-Ljungdahl pathway. All MAGs had significant genetic potential for organic carbon oxidation. Our results indicate that novel acidophiles are contributing to biosulfidogenesis in the deep layer of Cueva de la Mora, and that in situ sulfide production is limited by organic carbon availability and sulfur oxidation.

7.
Front Microbiol ; 12: 720101, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421879

RESUMEN

This work shines light on the role of extracellular polymeric substance (EPS) in the formation and preservation of elemental sulfur biominerals produced by sulfur-oxidizing bacteria. We characterized elemental sulfur particles produced within a Sulfurovum-rich biofilm in the Frasassi Cave System (Italy). The particles adopt spherical and bipyramidal morphologies, and display both stable (α-S8) and metastable (ß-S8) crystal structures. Elemental sulfur is embedded within a dense matrix of EPS, and the particles are surrounded by organic envelopes rich in amide and carboxylic groups. Organic encapsulation and the presence of metastable crystal structures are consistent with elemental sulfur organomineralization, i.e., the formation and stabilization of elemental sulfur in the presence of organics, a mechanism that has previously been observed in laboratory studies. This research provides new evidence for the important role of microbial EPS in mineral formation in the environment. We hypothesize that the extracellular organics are used by sulfur-oxidizing bacteria for the stabilization of elemental sulfur minerals outside of the cell wall as a store of chemical energy. The stabilization of energy sources (in the form of a solid electron acceptor) in biofilms is a potential new role for microbial EPS that requires further investigation.

8.
Environ Microbiol ; 23(7): 3682-3694, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32996242

RESUMEN

In previous work, lab-scale reactors designed to study microbial Fe(II) oxidation rates at low pH were found to have stable rates under a wide range of pH and Fe(II) concentrations. Since the stirred reactor environment eliminates many of the temporal and spatial variations that promote high diversity among microbial populations in nature, we were surprised that the reactors supported multiple taxa presumed to be autotrophic Fe(II) oxidizers based on their phylogeny. Metagenomic analyses of the reactor communities revealed differences in the metabolic potential of these taxa with respect to Fe(II) oxidation and carbon fixation pathways, acquisition of potentially growth-limiting substrates and the ability to form biofilms. Our findings support the hypothesis that the long-term co-existence of multiple autotrophic Fe(II)-oxidizing populations in the reactors are due to distinct metabolic potential that supports differential growth in response to limiting resources such as nitrogen, phosphorus and oxygen. Our data also highlight the role of biofilms in creating spatially distinct geochemical niches that enable the co-existence of multiple taxa that occupy the same apparent metabolic niche when the system is viewed in bulk. The distribution of key metabolic functions across different co-existing taxa supported functional redundancy and imparted process stability to these reactors.


Asunto(s)
Metagenómica , Nitrógeno , Procesos Autotróficos , Reactores Biológicos , Compuestos Ferrosos , Oxidación-Reducción
9.
Microorganisms ; 8(9)2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32899650

RESUMEN

Cueva de la Mora (CM) is an acidic, meromictic pit lake in the Iberian Pyrite Belt characterized by extremely high metal(loid) concentrations and strong gradients in oxygen, metal, and nutrient concentrations. We hypothesized that geochemical variations with depth would result in differences in community composition and in metal resistance strategies among active microbial populations. We also hypothesized that metal resistance gene (MRG) expression would correlate with toxicity levels for dissolved metal species in the lake. Water samples were collected in the upper oxic layer, chemocline, and deep anoxic layer of the lake for shotgun metagenomic and metatranscriptomic sequencing. Metagenomic analyses revealed dramatic differences in the composition of the microbial communities with depth, consistent with changing geochemistry. Based on relative abundance of taxa identified in each metagenome, Eukaryotes (predominantly Coccomyxa) dominated the upper layer, while Archaea (predominantly Thermoplasmatales) dominated the deep layer, and a combination of Bacteria and Eukaryotes were abundant at the chemocline. We compared metal resistance across communities using a curated list of protein-coding MRGs with KEGG Orthology identifiers (KOs) and found that there were broad differences in the metal resistance strategies (e.g., intracellular metal accumulation) expressed by Eukaryotes, Bacteria, and Archaea. Although normalized abundances of MRG and MRG expression were generally higher in the deep layer, expression of metal-specific genes was not strongly related to variations in specific metal concentrations, especially for Cu and As. We also compared MRG potential and expression in metagenome assembled genomes (MAGs) from the deep layer, where metal concentrations are highest. Consistent with previous work showing differences in metal resistance mechanisms even at the strain level, MRG expression patterns varied strongly among MAG populations from the same depth. Some MAG populations expressed very few MRG known to date, suggesting that novel metal resistance strategies remain to be discovered in uncultivated acidophiles.

10.
ISME J ; 14(12): 3024-3037, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32770117

RESUMEN

Cyanobacterial mats were hotspots of biogeochemical cycling during the Precambrian. However, mechanisms that controlled O2 release by these ecosystems are poorly understood. In an analog to Proterozoic coastal ecosystems, the Frasassi sulfidic springs mats, we studied the regulation of oxygenic and sulfide-driven anoxygenic photosynthesis (OP and AP) in versatile cyanobacteria, and interactions with sulfur reducing bacteria (SRB). Using microsensors and stable isotope probing we found that dissolved organic carbon (DOC) released by OP fuels sulfide production, likely by a specialized SRB population. Increased sulfide fluxes were only stimulated after the cyanobacteria switched from AP to OP. O2 production triggered migration of large sulfur-oxidizing bacteria from the surface to underneath the cyanobacterial layer. The resultant sulfide shield tempered AP and allowed OP to occur for a longer duration over a diel cycle. The lack of cyanobacterial DOC supply to SRB during AP therefore maximized O2 export. This mechanism is unique to benthic ecosystems because transitions between metabolisms occur on the same time scale as solute transport to functionally distinct layers, with the rearrangement of the system by migration of microorganisms exaggerating the effect. Overall, cyanobacterial versatility disrupts the synergistic relationship between sulfide production and AP, and thus enhances diel O2 production.


Asunto(s)
Cianobacterias , Ecosistema , Oxígeno , Fotosíntesis , Sulfuros
11.
Environ Microbiol ; 22(6): 1971-1976, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32157786

RESUMEN

Chemotrophic microorganisms gain energy for cellular functions by catalyzing oxidation-reduction (redox) reactions that are out of equilibrium. Calculations of the Gibbs energy ( ΔG r ) can identify whether a reaction is thermodynamically favourable and quantify the accompanying energy yield at the temperature, pressure and chemical composition in the system of interest. Based on carefully calculated values of ΔG r , we predict a novel microbial metabolism - sulfur comproportionation (3H2 S + SO 4 2 - + 2H+ ⇌ 4S0 + 4H2 O). We show that at elevated concentrations of sulfide and sulfate in acidic environments over a broad temperature range, this putative metabolism can be exergonic ( ΔG r <0), yielding ~30-50 kJ mol-1 . We suggest that this may be sufficient energy to support a chemolithotrophic metabolism currently missing from the literature. Other versions of this metabolism, comproportionation to thiosulfate (H2 S + SO 4 2 - ⇌ S 2 O 3 2 - + H2 O) and to sulfite (H2 S + 3 SO 4 2 - ⇌ 4 SO 3 2 - + 2H+ ), are only moderately exergonic or endergonic even at ideal geochemical conditions. Natural and impacted environments, including sulfidic karst systems, shallow-sea hydrothermal vents, sites of acid mine drainage, and acid-sulfate crater lakes, may be ideal hunting grounds for finding microbial sulfur comproportionators.


Asunto(s)
Bacterias/metabolismo , Crecimiento Quimioautotrófico/fisiología , Metabolismo Energético/fisiología , Azufre/metabolismo , Respiraderos Hidrotermales/química , Oxidación-Reducción , Sulfatos , Temperatura , Termodinámica
12.
Front Microbiol ; 10: 2710, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31827465

RESUMEN

Elemental sulfur [S(0)] is a central and ecologically important intermediate in the sulfur cycle, which can be used by a wide diversity of microorganisms that gain energy from its oxidation, reduction, or disproportionation. S(0) is formed by oxidation of reduced sulfur species, which can be chemically or microbially mediated. A variety of sulfur-oxidizing bacteria can biomineralize S(0), either intracellularly or extracellularly. The details and mechanisms of extracellular S(0) formation by bacteria have been in particular understudied so far. An important question in this respect is how extracellular S(0) minerals can be formed and remain stable in the environment outside of their thermodynamic stability domain. It was recently discovered that S(0) minerals could be formed and stabilized by oxidizing sulfide in the presence of dissolved organic compounds, a process called S(0) organomineralization. S(0) particles formed through this mechanism possess specific signatures such as morphologies that differ from that of their inorganically precipitated counterparts, encapsulation within an organic envelope, and metastable crystal structures (presence of the monoclinic ß- and γ-S8 allotropes). Here, we investigated S(0) formation by the chemolithoautotrophic sulfur-oxidizing and nitrate-reducing bacterium Sulfuricurvum kujiense (Epsilonproteobacteria). We performed a thorough characterization of the S(0) minerals produced extracellularly in cultures of this microorganism, and showed that they present all the specific signatures (morphology, association with organics, and crystal structures) of organomineralized S(0). Using "spent medium" experiments, we furthermore demonstrated that soluble extracellular compounds produced by S. kujiense are necessary to form and stabilize S(0) minerals outside of the cells. This study provides the first experimental evidence of the importance of organomineralization in microbial S(0) formation. The prevalence of organomineralization in extracellular S(0) precipitation by other sulfur bacteria remains to be investigated, and the biological role of this mechanism is still unclear. However, we propose that sulfur-oxidizing bacteria could use soluble organics to stabilize stores of bioavailable S(0) outside the cells.

13.
Sci Rep ; 9(1): 7971, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138888

RESUMEN

Elemental sulfur (S(0)) is an important intermediate of the sulfur cycle and is generated by chemical and biological sulfide oxidation. Raman spectromicroscopy can be applied to environmental samples for the detection of S(0), as a practical non-destructive micron-scale method for use on wet material and living cells. Technical advances in filter materials enable the acquisition of ultra-low frequency (ULF) Raman measurements in the 10-100 cm-1 range using a single-stage spectrometer. Here we demonstrate the potency of ULF Raman spectromicroscopy to harness the external vibrational modes of previously unrecognized S(0) structures present in environmental samples. We investigate the chemical and structural nature of intracellular S(0) granules stored within environmental mats of sulfur-oxidizing γ-Proteobacteria (Thiothrix). In vivo intracellular ULF scans indicate the presence of amorphous cyclooctasulfur (S8), clarifying enduring uncertainties regarding the content of microbial sulfur storage globules. Raman scattering of extracellular sulfur clusters in Thiothrix mats furthermore reveals an unexpected abundance of metastable ß-S8 and γ-S8, in addition to the stable α-S8 allotrope. We propose ULF Raman spectroscopy as a powerful method for the micron-scale determination of S(0) structure in natural and laboratory systems, with a promising potential to shine new light on environmental microbial and chemical sulfur cycling mechanisms.


Asunto(s)
Azufre/análisis , Thiothrix/química , Oxidación-Reducción , Espectrometría Raman/métodos , Azufre/metabolismo , Thiothrix/metabolismo
14.
PLoS One ; 13(7): e0199784, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29969471

RESUMEN

A significant portion of oil released during the Deepwater Horizon disaster reached the Gulf of Mexico (GOM) seafloor. Predicting the long-term fate of this oil is hindered by a lack of data about the combined influences of pressure, temperature, and sediment composition on microbial hydrocarbon remineralization in deep-sea sediments. To investigate crude oil biodegradation by native GOM microbial communities, we incubated core-top sediments from 13 GOM sites at water depths from 60-1500 m with crude oil under simulated aerobic seafloor conditions. Biodegradation occurred in all samples and followed a predictable compound class sequence dictated by molecular weight and structure. 45 to ~100% of total n-alkane and 3 to 60% of total polycyclic aromatic hydrocarbons (PAH) were depleted. In reactors incubated at 4°C and at pressures of 6-15 MPa, the depletion in total n-alkane was inversely correlated to pressure (R2 ~ 0.85), equivalent to a 4% decrease in total n-alkane depletion for every 1 MPa increase. Our results indicated a modest inhibitory effect of pressure on biodegradation over our experimental range. However, the expansion of oil exploration to deeper waters (e.g., 5000 m) opens the risk of spills at conditions at which pressure might have a more pronounced effect.


Asunto(s)
Biodegradación Ambiental , Monitoreo del Ambiente , Sedimentos Geológicos/análisis , Petróleo/análisis , Petróleo/metabolismo , Presión , Golfo de México , Yacimiento de Petróleo y Gas
15.
Front Microbiol ; 9: 858, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29755448

RESUMEN

We report extremely low-light-adapted anoxygenic photosynthesis in a thick microbial mat in Magical Blue Hole, Abaco Island, The Bahamas. Sulfur cycling was reduced by iron oxides and organic carbon limitation. The mat grows below the halocline/oxycline at 30 m depth on the walls of the flooded sinkhole. In situ irradiance at the mat surface on a sunny December day was between 0.021 and 0.084 µmol photons m-2 s-1, and UV light (<400 nm) was the most abundant part of the spectrum followed by green wavelengths (475-530 nm). We measured a light-dependent carbon uptake rate of 14.5 nmol C cm-2 d-1. A 16S rRNA clone library of the green surface mat layer was dominated (74%) by a cluster (>97% sequence identity) of clones affiliated with Prosthecochloris, a genus within the green sulfur bacteria (GSB), which are obligate anoxygenic phototrophs. Typical photopigments of brown-colored GSB, bacteriochlorophyll e and (ß-)isorenieratene, were abundant in mat samples and their absorption properties are well-adapted to harvest light in the available green and possibly even UV-A spectra. Sulfide from the water column (3-6 µmol L-1) was the main source of sulfide to the mat as sulfate reduction rates in the mats were very low (undetectable-99.2 nmol cm-3 d-1). The anoxic water column was oligotrophic and low in dissolved organic carbon (175-228 µmol L-1). High concentrations of pyrite (FeS2; 1-47 µmol cm-3) together with low microbial process rates (sulfate reduction, CO2 fixation) indicate that the mats function as net sulfide sinks mainly by abiotic processes. We suggest that abundant Fe(III) (4.3-22.2 µmol cm-3) is the major source of oxidizing power in the mat, and that abiotic Fe-S-reactions play the main role in pyrite formation. Limitation of sulfate reduction by low organic carbon availability along with the presence of abundant sulfide-scavenging iron oxides considerably slowed down sulfur cycling in these mats.

16.
ISME J ; 12(2): 568-584, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29328062

RESUMEN

We report the isolation of a pinnacle-forming cyanobacterium isolated from a microbial mat covering the sediment surface at Little Salt Spring-a flooded sinkhole in Florida with a perennially microoxic and sulfidic water column. The draft genome of the isolate encodes all of the enzymatic machinery necessary for both oxygenic and anoxygenic photosynthesis, as well as genes for methylating hopanoids at the C-2 position. The physiological response of the isolate to H2S is complex: (i) no induction time is necessary for anoxygenic photosynthesis; (ii) rates of anoxygenic photosynthesis are regulated by both H2S and irradiance; (iii) O2 production is inhibited by H2S concentrations as low as 1 µM and the recovery rate of oxygenic photosynthesis is dependent on irradiance; (iv) under the optimal light conditions for oxygenic photosynthesis, rates of anoxygenic photosynthesis are nearly double those of oxygenic photosynthesis. We hypothesize that the specific adaptation mechanisms of the isolate to H2S emerged from a close spatial interaction with sulfate-reducing bacteria. The new isolate, Leptolyngbya sp. strain hensonii, is not closely related to other well-characterized Cyanobacteria that can perform anoxygenic photosynthesis, which further highlights the need to characterize the diversity and biogeography of metabolically versatile Cyanobacteria. The isolate will be an ideal model organism for exploring the adaptation of Cyanobacteria to sulfidic conditions.


Asunto(s)
Cianobacterias/metabolismo , Sulfuro de Hidrógeno/metabolismo , Fotosíntesis , Adaptación Fisiológica , Cianobacterias/genética , Cianobacterias/aislamiento & purificación , Oxígeno/metabolismo
17.
Astrobiology ; 18(1): 59-72, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29227145

RESUMEN

Cave minerals deposited in the presence of microbes may host geochemical biosignatures that can be utilized to detect subsurface life on Earth, Mars, or other habitable worlds. The sulfur isotopic composition of gypsum (CaSO4·2H2O) formed in the presence of sulfur-oxidizing microbes in the Frasassi cave system, Italy, was evaluated as a biosignature. Sulfur isotopic compositions (δ34SV-CDT) of gypsum sampled from cave rooms with sulfidic air varied from -11 to -24‰, with minor deposits of elemental sulfur having δ34S values between -17 and -19‰. Over centimeter-length scales, the δ34S values of gypsum varied by up to 8.5‰. Complementary laboratory experiments showed negligible fractionation during the oxidation of elemental sulfur to sulfate by Acidithiobacillus thiooxidans isolated from the caves. Additionally, gypsum precipitated in the presence and absence of microbes at acidic pH characteristic of the sulfidic cave walls has δ34S values that are on average 1‰ higher than sulfate. We therefore interpret the 8.5‰ variation in cave gypsum δ34S (toward more negative values) to reflect the isotopic effect of microbial sulfide oxidation directly to sulfate or via elemental sulfur intermediate. This range is similar to that expected by abiotic sulfide oxidation with oxygen, thus complicating the use of sulfur isotopes as a biosignature at centimeter-length scales. However, at the cave room (meter-length) scale, reactive transport modeling suggests that the overall ∼13‰ variability in gypsum δ34S reflects isotopic distillation of circulating H2S gas due to microbial sulfide oxidation occurring along the cave wall-atmosphere interface. Systematic variations of gypsum δ34S along gas flow paths can thus be interpreted as biogenic given that slow, abiotic oxidation cannot produce the same spatial patterns over similar length scales. The expression and preservation potential of this biosignature is dependent on gas flow parameters and diagenetic processes that modify gypsum δ34S values over geological timescales. Key Words: Gypsum-Sulfur isotopes-Biosignature-Sulfide oxidation-Cave. Astrobiology 18, 59-72.


Asunto(s)
Acidithiobacillus thiooxidans/metabolismo , Sulfato de Calcio/análisis , Exobiología/métodos , Isótopos de Azufre/análisis , Acidithiobacillus thiooxidans/aislamiento & purificación , Sulfato de Calcio/química , Cuevas/química , Cuevas/microbiología , Planeta Tierra , Vida , Marte , Oxidación-Reducción , Azufre/química , Isótopos de Azufre/química
18.
Appl Environ Microbiol ; 83(7)2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28087535

RESUMEN

Acid mine drainage (AMD) is a major environmental problem affecting tens of thousands of kilometers of waterways worldwide. Passive bioremediation of AMD relies on microbial communities to oxidize and remove iron from the system; however, iron oxidation rates in AMD environments are highly variable among sites. At Scalp Level Run (Cambria County, PA), first-order iron oxidation rates are 10 times greater than at other coal-associated iron mounds in the Appalachians. We examined the bacterial community at Scalp Level Run to determine whether a unique community is responsible for the rapid iron oxidation rate. Despite strong geochemical gradients, including a >10-fold change in the concentration of ferrous iron from 57.3 mg/liter at the emergence to 2.5 mg/liter at the base of the coal tailings pile, the bacterial community composition was nearly constant with distance from the spring outflow. Scalp Level Run contains many of the same taxa present in other AMD sites, but the community is dominated by two strains of Ferrovum myxofaciens, a species that is associated with high rates of Fe(II) oxidation in laboratory studies.IMPORTANCE Acid mine drainage pollutes more than 19,300 km of rivers and streams and 72,000 ha of lakes worldwide. Remediation is frequently ineffective and costly, upwards of $100 billion globally and nearly $5 billion in Pennsylvania alone. Microbial Fe(II) oxidation is more efficient than abiotic Fe(II) oxidation at low pH (P. C. Singer and W. Stumm, Science 167:1121-1123, 1970, https://doi.org/10.1126/science.167.3921.1121). Therefore, AMD bioremediation could harness microbial Fe(II) oxidation to fuel more-cost-effective treatments. Advances will require a deeper understanding of the ecology of Fe(II)-oxidizing microbial communities and the factors that control their distribution and rates of Fe(II) oxidation. We investigated bacterial communities that inhabit an AMD site with rapid Fe(II) oxidation and found that they were dominated by two operational taxonomic units (OTUs) of Ferrovum myxofaciens, a taxon associated with high laboratory rates of iron oxidation. This research represents a step forward in identifying taxa that can be used to enhance cost-effective AMD bioremediation.


Asunto(s)
Bacterias/metabolismo , Betaproteobacteria/metabolismo , Minas de Carbón , Compuestos Férricos/química , Hierro/metabolismo , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Ácidos , Bacterias/aislamiento & purificación , Fenómenos Fisiológicos Bacterianos , Betaproteobacteria/aislamiento & purificación , Biodegradación Ambiental , Carbón Mineral , Microbiología Ambiental , Concentración de Iones de Hidrógeno , Residuos Industriales , Hierro/química , Consorcios Microbianos , Minería , Oxidación-Reducción , Pennsylvania , Contaminantes del Agua
19.
Environ Microbiol ; 19(3): 1251-1265, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28035767

RESUMEN

Oxygenic and anoxygenic photosynthesis were studied with microsensors in microbial mats found at 9-10 m depth in anoxic and sulfidic water in Little Salt Spring (Florida, USA). The lake sediments were covered with a 1-2 mm thick red mat dominated by filamentous Cyanobacteria, below which Green Sulfur Bacteria (GSB, Chlorobiaceae) were highly abundant. Within 4 mm inside the mats, the incident radiation was attenuated to undetectable levels. In situ microsensor data showed both oxygenic photosynthesis in the red surface layer and light-induced sulfide dynamics up to 1 cm depth. Anoxygenic photosynthesis occurred during all daylight hours, with complete sulfide depletion around midday. Oxygenic photosynthesis was limited to 4 h per day, due to sulfide inhibition in the early morning and late afternoon. Laboratory measurements on retrieved samples showed that oxygenic photosynthesis was fully but reversibly inhibited by sulfide. In patches Fe(III) alleviated the inhibition of oxygenic photosynthesis by sulfide. GSB were resistant to oxygen and showed a low affinity to sulfide. Their light response showed saturation at very low intensities.


Asunto(s)
Chlorobi/metabolismo , Cianobacterias/metabolismo , Manantiales de Aguas Termales/microbiología , Lagos/microbiología , Oxígeno/metabolismo , Fotosíntesis , Sulfuros/metabolismo , Chlorobi/clasificación , Chlorobi/genética , Chlorobi/aislamiento & purificación , Cianobacterias/genética , Cianobacterias/aislamiento & purificación , Compuestos Férricos/análisis , Compuestos Férricos/metabolismo , Florida , Manantiales de Aguas Termales/análisis , Lagos/análisis , Fotosíntesis/fisiología , Sulfuros/análisis
20.
ISME J ; 10(12): 2879-2891, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27187796

RESUMEN

Extremely acidic (pH 0-1.5) Acidithiobacillus-dominated biofilms known as snottites are found in sulfide-rich caves around the world. Given the extreme geochemistry and subsurface location of the biofilms, we hypothesized that snottite Acidithiobacillus populations would be genetically isolated. We therefore investigated biogeographic relationships among snottite Acidithiobacillus spp. separated by geographic distances ranging from meters to 1000s of kilometers. We determined genetic relationships among the populations using techniques with three levels of resolution: (i) 16S rRNA gene sequencing, (ii) 16S-23S intergenic transcribed spacer (ITS) region sequencing and (iii) multi-locus sequencing typing (MLST). We also used metagenomics to compare functional gene characteristics of select populations. Based on 16S rRNA genes, snottites in Italy and Mexico are dominated by different sulfur-oxidizing Acidithiobacillus spp. Based on ITS sequences, Acidithiobacillus thiooxidans strains from different cave systems in Italy are genetically distinct. Based on MLST of isolates from Italy, genetic distance is positively correlated with geographic distance both among and within caves. However, metagenomics revealed that At. thiooxidans populations from different cave systems in Italy have different sulfur oxidation pathways and potentially other significant differences in metabolic capabilities. In light of those genomic differences, we argue that the observed correlation between genetic and geographic distance among snottite Acidithiobacillus populations is partially explained by an evolutionary model in which separate cave systems were stochastically colonized by different ancestral surface populations, which then continued to diverge and adapt in situ.


Asunto(s)
Acidithiobacillus/fisiología , Biopelículas , Cuevas/microbiología , Azufre/metabolismo , Acidithiobacillus/clasificación , Acidithiobacillus/genética , Acidithiobacillus/aislamiento & purificación , Italia , Metagenómica , México , Tipificación de Secuencias Multilocus , Filogenia , Filogeografía , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...