Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 12(23)2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-38067194

RESUMEN

The bone marrow (BM) hematopoietic system (HS) gives rise to blood cells originating from hematopoietic stem cells (HSCs), including megakaryocytes (MKs) and red blood cells (erythrocytes; RBCs). Many steps of the cell-fate decision remain to be elucidated, being important for cancer treatment. To explore the role of Wnt/ß-catenin for MK and RBC differentiation, we activated ß-catenin signaling in platelet-derived growth factor b (Pdgfb)-expressing cells of the HS using a Cre-lox approach (Ctnnb1BM-GOF). FACS analysis revealed that Pdgfb is mainly expressed by megakaryocytic progenitors (MKPs), MKs and platelets. Recombination resulted in a lethal phenotype in mutants (Ctnnb1BM-GOFwt/fl, Ctnnb1BM-GOFfl/fl) 3 weeks after tamoxifen injection, showing an increase in MKs in the BM and spleen, but no pronounced anemia despite reduced erythrocyte counts. BM transplantation (BMT) of Ctnnb1BM-GOF BM into lethally irradiated wildtype recipients (BMT-Ctnnb1BM-GOF) confirmed the megakaryocytic, but not the lethal phenotype. CFU-MK assays in vitro with BM cells of Ctnnb1BM-GOF mice supported MK skewing at the expense of erythroid colonies. Molecularly, the runt-related transcription factor 1 (RUNX1) mRNA, known to suppress erythropoiesis, was upregulated in Ctnnb1BM-GOF BM cells. In conclusion, ß-catenin activation plays a key role in cell-fate decision favoring MK development at the expense of erythroid production.


Asunto(s)
Megacariocitos , Trombopoyesis , beta Catenina , Animales , Ratones , beta Catenina/metabolismo , Células Progenitoras de Megacariocitos y Eritrocitos , Megacariocitos/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Trombopoyesis/fisiología
2.
Acta Neuropathol ; 146(4): 551-564, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37656187

RESUMEN

Pilocytic astrocytoma (PA), the most common pediatric brain tumor, is driven by aberrant mitogen-activated protein kinase signaling most commonly caused by BRAF gene fusions or activating mutations. While 5-year overall survival rates exceed 95%, tumor recurrence or progression constitutes a major clinical challenge in incompletely resected tumors. Here, we used similarity network fusion (SNF) analysis in an integrative multi-omics approach employing RNA transcriptomic and mass spectrometry-based proteomic profiling to molecularly characterize PA tissue samples from 62 patients. Thereby, we uncovered that PAs segregated into two molecularly distinct groups, namely, Group 1 and Group 2, which were validated in three non-overlapping cohorts. Patients with Group 1 tumors were significantly younger and showed worse progression-free survival compared to patients with group 2 tumors. Ingenuity pathways analysis (IPA) and gene set enrichment analysis (GSEA) revealed that Group 1 tumors were enriched for immune response pathways, such as interferon signaling, while Group 2 tumors showed enrichment for action potential and neurotransmitter signaling pathways. Analysis of immune cell-related gene signatures showed an enrichment of infiltrating T Cells in Group 1 versus Group 2 tumors. Taken together, integrative multi-omics of PA identified biologically distinct and prognostically relevant tumor groups that may improve risk stratification of this single pathway driven tumor type.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Niño , Humanos , Multiómica , Proteómica , Astrocitoma/genética , Neoplasias Encefálicas/genética , Potenciales de Acción
3.
Neuro Oncol ; 25(11): 2058-2071, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37148198

RESUMEN

BACKGROUND: Glioblastoma (GB) is incurable at present without established treatment options for recurrent disease. In this phase I first-in-human clinical trial we investigated safety and feasibility of adoptive transfer of clonal chimeric antigen receptor (CAR)-NK cells (NK-92/5.28.z) targeting HER2, which is expressed at elevated levels by a subset of glioblastomas. METHODS: Nine patients with recurrent HER2-positive GB were treated with single doses of 1 × 107, 3 × 107, or 1 × 108 irradiated CAR-NK cells injected into the margins of the surgical cavity during relapse surgery. Imaging at baseline and follow-up, peripheral blood lymphocyte phenotyping and analyses of the immune architecture by multiplex immunohistochemistry and spatial digital profiling were performed. RESULTS: There were no dose-limiting toxicities, and none of the patients developed a cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome. Five patients showed stable disease after relapse surgery and CAR-NK injection that lasted 7 to 37 weeks. Four patients had progressive disease. Pseudoprogression was found at injection sites in 2 patients, suggestive of a treatment-induced immune response. For all patients, median progression-free survival was 7 weeks, and median overall survival was 31 weeks. Furthermore, the level of CD8+ T-cell infiltration in recurrent tumor tissue prior to CAR-NK cell injection positively correlated with time to progression. CONCLUSIONS: Intracranial injection of HER2-targeted CAR-NK cells is feasible and safe in patients with recurrent GB. 1 × 108 NK-92/5.28.z cells was determined as the maximum feasible dose for a subsequent expansion cohort with repetitive local injections of CAR-NK cells.


Asunto(s)
Glioblastoma , Receptores Quiméricos de Antígenos , Humanos , Glioblastoma/patología , Recurrencia Local de Neoplasia/tratamiento farmacológico , Células Asesinas Naturales , Recurrencia , Inmunoterapia Adoptiva/métodos
4.
Sci Rep ; 12(1): 20925, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463381

RESUMEN

Ischemic stroke is a serious neurological disorder that is associated with dysregulation of the neurovascular unit (NVU) and impairment of the blood-brain barrier (BBB). Paradoxically, reperfusion therapies can aggravate NVU and BBB dysfunction, leading to deleterious consequences in addition to the obvious benefits. Using the recently established EPAM-ia method, we identified osteopontin as a target dysregulated in multiple NVU cell types and demonstrated that osteopontin targeting in the early acute phase post-transient middle cerebral artery occlusion (tMCAO) evolves protective effects. Here, we assessed the time course of osteopontin and CD44 receptor expression in NVU cells and examined cerebroprotective effects of osteopontin targeting in early and late acute phases of ischemic stroke. Expression analysis of osteopontin and CD44 receptor post-tMCAO indicated increased levels of both, from early to late acute phases, which was supported by their co-localization in NVU cells. Combined osteopontin targeting in early and late acute phases with anti-osteopontin antibody resulted in further improvement in BBB recovery and edema reduction compared to targeting only in the early acute phase comprising the reperfusion window. Combined targeting led to reduced infarct volumes, which was not observed for the single early acute phase targeting. The effects of the therapeutic antibody were confirmed both in vitro and in vivo in reducing osteopontin and CD44 expression. Osteopontin targeting at the NVU in early and late acute phases of ischemic stroke improves edema and infarct size in mice, suggesting anti-osteopontin therapy as promising adjunctive treatment to reperfusion therapy.


Asunto(s)
Accidente Cerebrovascular Isquémico , Ratones , Animales , Modelos Animales de Enfermedad , Reperfusión , Edema , Infarto
5.
Acta Neuropathol ; 144(2): 305-337, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35752654

RESUMEN

Blood-brain barrier (BBB) dysfunction, characterized by degradation of BBB junctional proteins and increased permeability, is a crucial pathophysiological feature of acute ischemic stroke. Dysregulation of multiple neurovascular unit (NVU) cell types is involved in BBB breakdown in ischemic stroke that may be further aggravated by reperfusion therapy. Therefore, therapeutic co-targeting of dysregulated NVU cell types in acute ischemic stroke constitutes a promising strategy to preserve BBB function and improve clinical outcome. However, methods for simultaneous isolation of multiple NVU cell types from the same diseased central nervous system (CNS) tissue, crucial for the identification of therapeutic targets in dysregulated NVU cells, are lacking. Here, we present the EPAM-ia method, that facilitates simultaneous isolation and analysis of the major NVU cell types (endothelial cells, pericytes, astrocytes and microglia) for the identification of therapeutic targets in dysregulated NVU cells to improve the BBB function. Applying this method, we obtained a high yield of pure NVU cells from murine ischemic brain tissue, and generated a valuable NVU transcriptome database ( https://bioinformatics.mpi-bn.mpg.de/SGD_Stroke ). Dissection of the NVU transcriptome revealed Spp1, encoding for osteopontin, to be highly upregulated in all NVU cells 24 h after ischemic stroke. Upregulation of osteopontin was confirmed in stroke patients by immunostaining, which was comparable with that in mice. Therapeutic targeting by subcutaneous injection of an anti-osteopontin antibody post-ischemic stroke in mice resulted in neutralization of osteopontin expression in the NVU cell types investigated. Apart from attenuated glial activation, osteopontin neutralization was associated with BBB preservation along with decreased brain edema and reduced risk for hemorrhagic transformation, resulting in improved neurological outcome and survival. This was supported by BBB-impairing effects of osteopontin in vitro. The clinical significance of these findings is that anti-osteopontin antibody therapy might augment current approved reperfusion therapies in acute ischemic stroke by minimizing deleterious effects of ischemia-induced BBB disruption.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Barrera Hematoencefálica/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Células Endoteliales , Ratones , Accidente Cerebrovascular/tratamiento farmacológico
6.
J Neurosci ; 42(10): 1908-1929, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-34903569

RESUMEN

The precise regulation of blood-brain barrier (BBB) permeability for immune cells and blood-borne substances is essential to maintain brain homeostasis. Sphingosine-1-phosphate (S1P), a lipid signaling molecule enriched in plasma, is known to affect BBB permeability. Previous studies focused on endothelial S1P receptors 1 and 2, reporting a barrier-protective effect of S1P1 and a barrier-disruptive effect of S1P2. Here, we present novel data characterizing the expression, localization, and function of the S1P receptor 4 (S1P4) on primary brain microvascular endothelial cells (BMECs). Hitherto, the receptor was deemed to be exclusively immune cell associated. We detected a robust expression of S1P4 in homeostatic murine BMECs (MBMECs), bovine BMECs (BBMECs), and porcine BMECs (PBMECs) and pinpointed its localization to abluminal endothelial membranes via immunoblotting of fractionated brain endothelial membrane fragments. Apical S1P treatment of BMECs tightened the endothelial barrier in vitro, whereas basolateral S1P treatment led to an increased permeability that correlated with S1P4 downregulation. Likewise, downregulation of S1P4 was observed in mouse brain microvessels (MBMVs) after stroke, a neurologic disease associated with BBB impairment. RNA sequencing and qPCR analysis of BMECs suggested the involvement of S1P4 in endothelial homeostasis and barrier function. Using S1P4 knock-out (KO) mice and S1P4 siRNA as well as pharmacological agonists and antagonists of S1P4 both in vitro and in vivo, we demonstrate an overall barrier-protective function of S1P4. We therefore suggest S1P4 as a novel target regulating BBB permeability and propose its therapeutic potential in CNS diseases associated with BBB dysfunction.SIGNIFICANCE STATEMENT Many neurologic diseases including multiple sclerosis and stroke are associated with blood-brain barrier (BBB) impairment and disturbed brain homeostasis. Sphingosine-1-phosphate receptors (S1PRs) are potent regulators of endothelial permeability and pharmacological S1PR modulators are already in clinical use. However, the precise role of S1P for BBB permeability regulation and the function of receptors other than S1P1 and S1P2 therein are still unclear. Our study shows both barrier-disruptive and barrier-protective effects of S1P at the BBB that depend on receptor polarization. We demonstrate the expression and novel barrier-protective function of S1P4 in brain endothelial cells and pinpoint its localization to abluminal membranes. Our work may contribute to the development of novel specific S1PR modulators for the treatment of neurologic diseases associated with BBB impairment.


Asunto(s)
Barrera Hematoencefálica , Receptores de Esfingosina-1-Fosfato , Accidente Cerebrovascular , Animales , Barrera Hematoencefálica/metabolismo , Bovinos , Células Endoteliales/metabolismo , Homeostasis , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Ratones , Ratones Noqueados , Permeabilidad , Fenotipo , Receptores de Lisoesfingolípidos/genética , Esfingosina/metabolismo , Esfingosina/farmacología , Receptores de Esfingosina-1-Fosfato/metabolismo , Accidente Cerebrovascular/metabolismo , Porcinos
7.
EMBO Mol Med ; 13(5): e13412, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33755340

RESUMEN

The tumor microenvironment in brain metastases is characterized by high myeloid cell content associated with immune suppressive and cancer-permissive functions. Moreover, brain metastases induce the recruitment of lymphocytes. Despite their presence, T-cell-directed therapies fail to elicit effective anti-tumor immune responses. Here, we seek to evaluate the applicability of radio-immunotherapy to modulate tumor immunity and overcome inhibitory effects that diminish anti-cancer activity. Radiotherapy-induced immune modulation resulted in an increase in cytotoxic T-cell numbers and prevented the induction of lymphocyte-mediated immune suppression. Radio-immunotherapy led to significantly improved tumor control with prolonged median survival in experimental breast-to-brain metastasis. However, long-term efficacy was not observed. Recurrent brain metastases showed accumulation of blood-borne PD-L1+ myeloid cells after radio-immunotherapy indicating the establishment of an immune suppressive environment to counteract re-activated T-cell responses. This finding was further supported by transcriptional analyses indicating a crucial role for monocyte-derived macrophages in mediating immune suppression and regulating T-cell function. Therefore, selective targeting of immune suppressive functions of myeloid cells is expected to be critical for improved therapeutic efficacy of radio-immunotherapy in brain metastases.


Asunto(s)
Neoplasias Encefálicas , Microambiente Tumoral , Neoplasias Encefálicas/radioterapia , Humanos , Inmunoterapia , Macrófagos , Células Mieloides
8.
Prog Neurobiol ; 199: 101937, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33383106

RESUMEN

Maintenance of the endothelial blood-brain-barrier (BBB) through Wnt/ß-catenin signalling is essential for neuronal function. The cells however, providing Wnt growth factors at the adult neurovascular unit (NVU) are poorly explored. Here we show by conditionally knocking out the evenness interrupted (Evi) gene in astrocytes (EviΔAC) that astrocytic Wnt release is crucial for BBB and NVU integrity. EviΔAC mice developed brain oedema and increased vascular tracer leakage. While brain vascularization and endothelial junctions were not altered in 10 and 40 week-old mice, endothelial caveolin(Cav)-1-mediated vesicle formation was increased in vivo and in vitro. Moreover, astrocytic end-feet were swollen, and aquaporin-4 distribution was disturbed, coinciding with decreased astrocytic Wnt activity. Vascular permeability correlated with increased neuronal activation by c-fos staining, indicative of altered neuronal function. Astrocyte-derived Wnts thus serve to maintain Wnt/ß-catenin activity in endothelia and in astrocytes, thereby controlling Cav-1 expression, vesicular abundance, and end-feet integrity at the NVU.


Asunto(s)
Astrocitos , Barrera Hematoencefálica , Animales , Astrocitos/metabolismo , Barrera Hematoencefálica/metabolismo , Permeabilidad Capilar , Ratones , Proteínas Wnt , beta Catenina/metabolismo
9.
Acta Neuropathol ; 140(2): 183-208, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32529267

RESUMEN

Bacterial meningitis is a deadly disease most commonly caused by Streptococcus pneumoniae, leading to severe neurological sequelae including cerebral edema, seizures, stroke, and mortality when untreated. Meningitis is initiated by the transfer of S. pneumoniae from blood to the brain across the blood-cerebrospinal fluid barrier or the blood-brain barrier (BBB). The underlying mechanisms are still poorly understood. Current treatment strategies include adjuvant dexamethasone for inflammation and cerebral edema, followed by antibiotics. The success of dexamethasone is however inconclusive, necessitating new therapies for controlling edema, the primary reason for neurological complications. Since we have previously shown a general activation of hypoxia inducible factor (HIF-1α) in bacterial infections, we hypothesized that HIF-1α, via induction of vascular endothelial growth factor (VEGF) is involved in transmigration of pathogens across the BBB. In human, murine meningitis brain samples, HIF-1α activation was observed by immunohistochemistry. S. pneumoniae infection in brain endothelial cells (EC) resulted in in vitro upregulation of HIF-1α/VEGF (Western blotting/qRT-PCR) associated with increased paracellular permeability (fluorometry, impedance measurements). This was supported by bacterial localization at cell-cell junctions in vitro and in vivo in brain ECs from mouse and humans (confocal, super-resolution, electron microscopy, live-cell imaging). Hematogenously infected mice showed increased permeability, S. pneumoniae deposition in the brain, along with upregulation of genes in the HIF-1α/VEGF pathway (RNA sequencing of brain microvessels). Inhibition of HIF-1α with echinomycin, siRNA in bEnd5 cells or using primary brain ECs from HIF-1α knock-out mice revealed reduced endothelial permeability and transmigration of S. pneumoniae. Therapeutic rescue using the HIF-1α inhibitor echinomycin resulted in increased survival and improvement of BBB function in S. pneumoniae-infected mice. We thus demonstrate paracellular migration of bacteria across BBB and a critical role for HIF-1α/VEGF therein and hence propose targeting this pathway to prevent BBB dysfunction and ensuing brain damage in infections.


Asunto(s)
Barrera Hematoencefálica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Meningitis Neumocócica , Streptococcus pneumoniae , Migración Transendotelial y Transepitelial/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Barrera Hematoencefálica/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Cancer Immunol Res ; 7(12): 1910-1927, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31597643

RESUMEN

Glioblastoma (GBM) is a non-T-cell-inflamed cancer characterized by an immunosuppressive microenvironment that impedes dendritic cell maturation and T-cell cytotoxicity. Proangiogenic cytokines such as VEGF and angiopoietin-2 (Ang-2) have high expression in glioblastoma in a cell-specific manner and not only drive tumor angiogenesis and vascular permeability but also negatively regulate T-lymphocyte and innate immune cell responses. Consequently, the alleviation of immunosuppression might be a prerequisite for successful immune checkpoint therapy in GBM. We here combined antiangiogenic and immune checkpoint therapy and demonstrated improved therapeutic efficacy in syngeneic, orthotopic GBM models. We observed that blockade of VEGF, Ang-2, and programmed cell death protein-1 (PD-1) significantly extended survival compared with vascular targeting alone. In the GBM microenvironment, triple therapy increased the numbers of CTLs, which inversely correlated with myeloid-derived suppressor cells and regulatory T cells. Transcriptome analysis of GBM microvessels indicated a global vascular normalization that was highest after triple therapy. Our results propose a rationale to overcome tumor immunosuppression and the current limitations of VEGF monotherapy by integrating the synergistic effects of VEGF/Ang-2 and PD-1 blockade to reinforce antitumor immunity through a normalized vasculature.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Angiopoyetina 2/antagonistas & inhibidores , Antineoplásicos Inmunológicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Bevacizumab/uso terapéutico , Encéfalo/irrigación sanguínea , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/mortalidad , Línea Celular Tumoral , Femenino , Glioblastoma/irrigación sanguínea , Glioblastoma/inmunología , Glioblastoma/mortalidad , Humanos , Tolerancia Inmunológica/efectos de los fármacos , Ratones Endogámicos C57BL
11.
Elife ; 82019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30932814

RESUMEN

The circumventricular organs (CVOs) in the central nervous system (CNS) lack a vascular blood-brain barrier (BBB), creating communication sites for sensory or secretory neurons, involved in body homeostasis. Wnt/ß-catenin signaling is essential for BBB development and maintenance in endothelial cells (ECs) in most CNS vessels. Here we show that in mouse development, as well as in adult mouse and zebrafish, CVO ECs rendered Wnt-reporter negative, suggesting low level pathway activity. Characterization of the subfornical organ (SFO) vasculature revealed heterogenous claudin-5 (Cldn5) and Plvap/Meca32 expression indicative for tight and leaky vessels, respectively. Dominant, EC-specific ß-catenin transcription in mice, converted phenotypically leaky into BBB-like vessels, by augmenting Cldn5+vessels, stabilizing junctions and by reducing Plvap/Meca32+ and fenestrated vessels, resulting in decreased tracer permeability. Endothelial tightening augmented neuronal activity in the SFO of water restricted mice. Hence, regulating the SFO vessel barrier may influence neuronal function in the context of water homeostasis.


Asunto(s)
Conducta de Ingestión de Líquido , Órgano Subfornical/fisiología , Agua/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Permeabilidad Capilar , Células Endoteliales/fisiología , Homeostasis , Ratones Endogámicos C57BL , Pez Cebra , Proteínas de Pez Cebra/metabolismo
12.
Oncotarget ; 9(32): 22406-22422, 2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-29854288

RESUMEN

The tumor vasculature differs from normal blood vessels in morphology, composition and stability. Here, we describe a novel tumor vessel-disrupting mechanism. In an HT1080/mouse xenograft tumor model rhodocetin-αß was highly effective in disrupting the tumor endothelial barrier. Mechanistically, rhodocetin-αß triggered MET signaling via neuropilin-1. As both neuropilin-1 and MET were only lumen-exposed in a subset of abnormal tumor vessels, but not in normal vessels, the prime target of rhodocetin-αß were these abnormal tumor vessels. Consequently, cells lining such tumor vessels became increasingly motile which compromised the vessel wall tightness. After this initial leakage, rhodocetin-αß could leave the bloodstream and reach the as yet inaccessible neuropilin-1 on the basolateral side of endothelial cells and thus disrupt nearby vessels. Due to the specific neuropilin-1/MET co-distribution on cells lining such abnormal tumor vessels in contrast to normal endothelial cells, rhodocetin-αß formed the necessary trimeric signaling complex of rhodocetin-αß-MET-neuropilin-1 only in these abnormal tumor vessels. This selective attack of tumor vessels, sparing endothelial cell-lined vessels of normal tissues, suggests that the neuropilin-1-MET signaling axis may be a promising drugable target for anti-tumor therapy, and that rhodocetin-αß may serve as a lead structure to develop novel anti-tumor drugs that target such vessels.

13.
J Cereb Blood Flow Metab ; 37(7): 2471-2484, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27629102

RESUMEN

Nucleoside diphosphate kinase B (NDPK-B) is an enzyme required for nucleoside triphosphate homeostasis, which has been shown to interact with caveolin-1 (Cav-1). In endothelial cells (ECs), NDPK-B contributes to the regulation of angiogenesis and adherens junction (AJ) integrity. We therefore investigated whether an interaction of NDPK-B with Cav-1 in ECs is required for this regulation and the involvement of VEGF signaling herein. We report that simultaneous depletion of NDPK-B/Cav-1 in HUVECs synergistically impaired sprouting angiogenesis. NDPK-B depletion alone impaired caveolae formation, VEGF-induced phosphorylation of c-Src/Cav-1 but not of ERK1/2/AKT/eNOS. In vivo, Cav-1-/- mice showed impaired retinal vascularization at postnatal-day five, whereas NDPK-B-/- mice did not. Primary mouse brain ECs (MBMECs) from NDPK-B-/- mice showed no change in caveolae content and transendothelial-electrical resistance upon VEGF stimulation. Interestingly, NDPK-B-/- MBMECs displayed an accumulation of intracellular vesicles and increased Cav-1 levels. Dextran tracer analysis showed increased vascular permeability in the brain of NDPK-B-/- mice compared to wild type. In conclusion, our data indicate that NDPK-B is required for the correct localization of Cav-1 at the plasma membrane and the formation of caveolae. The genetic ablation of NDPK-B could partially be compensated by an increased Cav-1 content, which restored caveolae formation and some endothelial functions.


Asunto(s)
Caveolas/metabolismo , Caveolina 1/metabolismo , Endotelio Vascular/metabolismo , Nucleósido Difosfato Quinasas NM23/metabolismo , Neovascularización Fisiológica/fisiología , Familia-src Quinasas/metabolismo , Animales , Encéfalo/irrigación sanguínea , Proteína Tirosina Quinasa CSK , Caveolas/ultraestructura , Caveolina 1/genética , Membrana Celular/enzimología , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Permeabilidad de la Membrana Celular , Células Endoteliales , Endotelio Vascular/enzimología , Endotelio Vascular/ultraestructura , Células Endoteliales de la Vena Umbilical Humana , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Microvasos/citología , Microvasos/metabolismo , Microvasos/ultraestructura , Nucleósido Difosfato Quinasas NM23/genética , Neovascularización Fisiológica/genética , Fosforilación , Vasos Retinianos/crecimiento & desarrollo , Vasos Retinianos/metabolismo , Vasos Retinianos/ultraestructura , Factor A de Crecimiento Endotelial Vascular/metabolismo
14.
Acta Neuropathol ; 131(5): 753-73, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26932603

RESUMEN

The homeostasis of the central nervous system is maintained by the blood-brain barrier (BBB). Angiopoietins (Ang-1/Ang-2) act as antagonizing molecules to regulate angiogenesis, vascular stability, vascular permeability and lymphatic integrity. However, the precise role of angiopoietin/Tie2 signaling at the BBB remains unclear. We investigated the influence of Ang-2 on BBB permeability in wild-type and gain-of-function (GOF) mice and demonstrated an increase in permeability by Ang-2, both in vitro and in vivo. Expression analysis of brain endothelial cells from Ang-2 GOF mice showed a downregulation of tight/adherens junction molecules and increased caveolin-1, a vesicular permeability-related molecule. Immunohistochemistry revealed reduced pericyte coverage in Ang-2 GOF mice that was supported by electron microscopy analyses, which demonstrated defective intra-endothelial junctions with increased vesicles and decreased/disrupted glycocalyx. These results demonstrate that Ang-2 mediates permeability via paracellular and transcellular routes. In patients suffering from stroke, a cerebrovascular disorder associated with BBB disruption, Ang-2 levels were upregulated. In mice, Ang-2 GOF resulted in increased infarct sizes and vessel permeability upon experimental stroke, implicating a role of Ang-2 in stroke pathophysiology. Increased permeability and stroke size were rescued by activation of Tie2 signaling using a vascular endothelial protein tyrosine phosphatase inhibitor and were independent of VE-cadherin phosphorylation. We thus identified Ang-2 as an endothelial cell-derived regulator of BBB permeability. We postulate that novel therapeutics targeting Tie2 signaling could be of potential use for opening the BBB for increased CNS drug delivery or tighten it in neurological disorders associated with cerebrovascular leakage and brain edema.


Asunto(s)
Angiopoyetina 2/metabolismo , Barrera Hematoencefálica/fisiología , Receptor TIE-2/metabolismo , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Transducción de Señal/efectos de los fármacos , Accidente Cerebrovascular/patología , Angiopoyetina 2/genética , Angiopoyetina 2/farmacología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/ultraestructura , Edema Encefálico/etiología , Edema Encefálico/patología , Permeabilidad Capilar/efectos de los fármacos , Permeabilidad Capilar/genética , Células Cultivadas , Modelos Animales de Enfermedad , Impedancia Eléctrica , Endotelio/efectos de los fármacos , Endotelio/metabolismo , Femenino , Humanos , Técnicas In Vitro , Masculino , Ratones , Ratones Transgénicos , Microvasos/citología , Microvasos/efectos de los fármacos , Microvasos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Pericitos/efectos de los fármacos , Pericitos/metabolismo , Pericitos/patología , Pericitos/ultraestructura , Transducción de Señal/genética , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo
15.
Oncoimmunology ; 4(6): e1008371, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26155418

RESUMEN

Extracellular vesicles (EVs) have been shown to transfer various molecules, including functional RNA between cells and this process has been suggested to be particularly relevant in tumor-host interactions. However, data on EV-mediated RNA transfer has been obtained primarily by in vitro experiments or involving ex vivo manipulations likely affecting its biology, leaving their physiological relevance unclear. We engineered glioma and carcinoma tumor cells to express Cre recombinase showing their release of EVs containing Cre mRNA in various EV subfractions including exosomes. Transplantation of these genetically modified tumor cells into mice with a Cre reporter background leads to frequent recombination events at the tumor site. In both tumor models the majority of recombined cells are CD45+ leukocytes, predominantly Gr1+CD11b+ myeloid-derived suppressor cells (MDSCs). In addition, multiple lineages of recombined cells can be observed in the glioma model. In the lung carcinoma model, recombined MDSCs display an enhanced immunosuppressive phenotype and an altered miRNA profile compared to their non-recombined counterparts. Cre-lox based tracing of tumor EV RNA transfer in vivo can therefore be used to identify individual target cells in the tumor microenvironment for further mechanistical or functional analysis.

16.
PLoS Biol ; 12(6): e1001874, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24893313

RESUMEN

Mechanisms behind how the immune system signals to the brain in response to systemic inflammation are not fully understood. Transgenic mice expressing Cre recombinase specifically in the hematopoietic lineage in a Cre reporter background display recombination and marker gene expression in Purkinje neurons. Here we show that reportergene expression in neurons is caused by intercellular transfer of functional Cre recombinase messenger RNA from immune cells into neurons in the absence of cell fusion. In vitro purified secreted extracellular vesicles (EVs) from blood cells contain Cre mRNA, which induces recombination in neurons when injected into the brain. Although Cre-mediated recombination events in the brain occur very rarely in healthy animals, their number increases considerably in different injury models, particularly under inflammatory conditions, and extend beyond Purkinje neurons to other neuronal populations in cortex, hippocampus, and substantia nigra. Recombined Purkinje neurons differ in their miRNA profile from their nonrecombined counterparts, indicating physiological significance. These observations reveal the existence of a previously unrecognized mechanism to communicate RNA-based signals between the hematopoietic system and various organs, including the brain, in response to inflammation.


Asunto(s)
Exosomas/metabolismo , Sistema Hematopoyético/metabolismo , Inflamación/metabolismo , Células de Purkinje/metabolismo , ARN Mensajero/metabolismo , Animales , Integrasas , Ratones Transgénicos , Recombinación Genética
17.
Stem Cells ; 32(1): 244-57, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24170295

RESUMEN

Data from transgenic mouse models show that neuronal progenitor cells (NPCs) migrate toward experimental brain tumors and modulate the course of pathology. However, the pathways whereby NPCs are attracted to CNS neoplasms are not fully understood and it is unexplored if NPCs migrate toward brain tumors (high-grade astrocytomas) in humans. We analyzed the tumor-parenchyma interface of neurosurgical resections for the presence of (NPCs) and distinguished these physiological cells from the tumor mass. We observed that polysialic acid neural cell adhesion molecule-positive NPCs accumulate at the border of high-grade astrocytomas and display a marker profile consistent with immature migratory NPCs. Importantly, these high-grade astrocytoma-associated NPCs did not carry genetic aberrations that are indicative of the tumor. Additionally, we observed NPCs accumulating in CNS metastases. These metastatic tumors are distinguished from neural cells by defined sets of markers. Transplanting murine glioma cells embedded in a cell-impermeable hollow fiber capsule into the brains of nestin-gfp reporter mice showed that diffusible factors are sufficient to induce a neurogenic reaction. In vitro, vascular endothelial growth factor (VEGF) secreted from glioma cells increases the migratory and proliferative behavior of adult human brain-derived neural stem and progenitor cells via stimulation of VEGF receptor-2 (VEGFR-2). In vivo, inhibiting VEGFR-2 signaling with a function-blocking antibody led to a reduction in NPC migration toward tumors. Overall, our data reveal a mechanism by which NPCs are attracted to CNS tumors and suggest that NPCs accumulate in human high-grade astrocytomas.


Asunto(s)
Neoplasias Encefálicas/patología , Glioma/patología , Células-Madre Neurales/citología , Neuronas/citología , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular/fisiología , Procesos de Crecimiento Celular/fisiología , Movimiento Celular/fisiología , Modelos Animales de Enfermedad , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Hibridación de Ácido Nucleico
18.
J Exp Med ; 209(9): 1611-27, 2012 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-22908324

RESUMEN

Endothelial Wnt/ß-catenin signaling is necessary for angiogenesis of the central nervous system and blood-brain barrier (BBB) differentiation, but its relevance for glioma vascularization is unknown. In this study, we show that doxycycline-dependent Wnt1 expression in subcutaneous and intracranial mouse glioma models induced endothelial Wnt/ß-catenin signaling and led to diminished tumor growth, reduced vascular density, and normalized vessels with increased mural cell attachment. These findings were corroborated in GL261 glioma cells intracranially transplanted in mice expressing dominant-active ß-catenin specifically in the endothelium. Enforced endothelial ß-catenin signaling restored BBB characteristics, whereas inhibition by Dkk1 (Dickkopf-1) had opposing effects. By overactivating the Wnt pathway, we induced the Wnt/ß-catenin-Dll4/Notch signaling cascade in tumor endothelia, blocking an angiogenic and favoring a quiescent vascular phenotype, indicated by induction of stalk cell genes. We show that ß-catenin transcriptional activity directly regulated endothelial expression of platelet-derived growth factor B (PDGF-B), leading to mural cell recruitment thereby contributing to vascular quiescence and barrier function. We propose that reinforced Wnt/ß-catenin signaling leads to inhibition of angiogenesis with normalized and less permeable vessels, which might prove to be a valuable therapeutic target for antiangiogenic and edema glioma therapy.


Asunto(s)
Neoplasias del Sistema Nervioso Central/irrigación sanguínea , Neoplasias del Sistema Nervioso Central/metabolismo , Glioma/irrigación sanguínea , Glioma/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proteínas de Unión al Calcio , Neoplasias del Sistema Nervioso Central/patología , Endotelio Vascular/metabolismo , Femenino , Factores de Transcripción Forkhead/genética , Glioma/patología , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Desnudos , Clasificación del Tumor , Neovascularización Patológica , Proteínas Proto-Oncogénicas c-sis/genética , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
19.
J Neurosci ; 29(12): 3799-807, 2009 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-19321776

RESUMEN

Transplanted hematopoietic cells have previously been shown to contribute to cells of other tissues by cell fusion. We wanted to elucidate whether this phenomenon of cell fusion also occurs under physiological conditions. Using a transgenic mouse reporter system to irreversibly label cells of the hematopoietic lineage, we were able to test their contribution to other tissues in the absence of any additional and potentially confounding factors such as irradiation or chemoablation. We found genetically marked, fused Purkinje neurons as well as hepatocytes in numbers comparable to previous bone marrow transplantation studies. The number of fused Purkinje neurons increased after intrathecal administration of bacterial lipopolysaccharide, suggesting that cell fusion can be induced by inflammation. In contrast to previous studies, however, genetically labeled Purkinje neurons never contained more than one nucleus, and we found only a single cell containing two Y-chromosomes in a male mouse. Consistent with results from the mouse model and unlike human bone marrow transplant recipients, postmortem adult human cerebelli of nontransplanted individuals were devoid of binucleated or polyploid Purkinje neurons. Therefore, our data suggests that fusion of hematopoietic cells with Purkinje neurons is only transient and does not lead to stable heterokaryon formation under noninvasive conditions.


Asunto(s)
Células de la Médula Ósea/fisiología , Células de Purkinje/fisiología , Animales , Trasplante de Médula Ósea , Encéfalo/patología , Fusión Celular , Linaje de la Célula , Núcleo Celular/ultraestructura , Diploidia , Encefalitis/patología , Femenino , Hepatocitos/citología , Hepatocitos/fisiología , Humanos , Integrasas/genética , Operón Lac , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Transgénicos , Especificidad de Órganos , Poliploidía , Regiones Promotoras Genéticas , Cromosoma Y
20.
J Neurosci ; 26(50): 13114-9, 2006 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-17167100

RESUMEN

The adult human brain retains the capacity to generate new neurons in the hippocampal formation (Eriksson et al., 1998) and neuronal progenitor cells (NPCs) in the forebrain (Bernier et al., 2000), but to what extent it is capable of reacting to injuries, such as ischemia, is not known. We analyzed postmortem tissue from normal and pathological human brain tissue (n = 54) to study the cellular response to ischemic injury in the forebrain. We observed that cells expressing the NPC marker polysialylated neural adhesion cell molecule (PSA-NCAM) are continuously generated in the adult human subventricular zone (SVZ) and migrate along the olfactory tracts. These cells were not organized in migrating chains as in the adult rodent rostral migratory stream, and their number was lower in the olfactory tracts of brains from old (56-81 years of age) compared with young (29 + 36 years of age) individuals. Moreover, we show that in brains of patients of advanced age (60-87 years of age), ischemia led to an elevated number of Ki-67-positive cells in the ipsilateral SVZ without concomitant apoptotic cell death. Additionally, ischemia led to an increased number of PSA-NCAM-positive NPCs close to the lateral ventricular walls, compared with brains of comparable age without obvious neuropathologic changes. These results suggest that the adult human brain retains a capacity to respond to ischemic injuries and that this capacity is maintained even in old age.


Asunto(s)
Envejecimiento , Diferenciación Celular/fisiología , Proliferación Celular , Neuronas/citología , Prosencéfalo/citología , Células Madre/citología , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/patología , Envejecimiento/fisiología , Movimiento Celular/fisiología , Humanos , Ventrículos Laterales/citología , Ventrículos Laterales/fisiología , Persona de Mediana Edad , Neuronas/fisiología , Prosencéfalo/fisiología , Células Madre/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...