Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Cell Sci ; 126(Pt 23): 5344-9, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24105265

RESUMEN

It is still unclear why some proteins that travel along the secretory pathway are retained in the Golgi complex whereas others make their way to the plasma membrane. Recent bioinformatic analyses on a large number of single-spanning membrane proteins support the hypothesis that specific features of the transmembrane domain (TMD) are relevant to the sorting of these proteins to particular organelles. Here we experimentally test this hypothesis for Golgi and plasma membrane proteins. Using the Golgi SNARE protein Sft1 and the plasma membrane SNARE protein Sso1 from Saccharomyces cerevisiae as model proteins, we modified the length of their TMDs and the volume of their exoplasmic hemi-TMD, and determined their subcellular localization both in yeast and mammalian cells. We found that short TMDs with high-volume exoplasmic hemi-TMDs confer Golgi membrane residence, whereas TMDs with low-volume exoplasmic hemi-TMDs, either short or long, confer plasma membrane residence to these proteins. Results indicate that the shape of the exoplasmic hemi-TMD, in addition to the length of the entire TMD, determine retention in the Golgi or exit to the plasma membrane of Type II membrane proteins.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Aparato de Golgi/metabolismo , Proteínas de la Membrana/química , Proteínas Qa-SNARE/química , Proteínas Qc-SNARE/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Cricetulus , Aparato de Golgi/ultraestructura , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas Qc-SNARE/genética , Proteínas Qc-SNARE/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
FEBS Lett ; 586(16): 2346-50, 2012 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-22687240

RESUMEN

The synthesis of gangliosides GM3 and GD3 is carried out by the successive addition of sialic acid residues on lactosylceramide (LacCer) by the Golgi located sialyltransferases Sial-T1 and Sial-T2, respectively. CHO-K1 cells lack Sial-T2 and only express GM3. Here we show that the activity of Sial-T1 was near 2.5-fold higher in homogenates of CHO-K1 cells transfected to express Sial-T2 (CHO-K1(Sial-T2)) than in untransfected cells. The appearance of Sial-T1 enzyme or gene transcription activators or the stabilization of the Sial-T1 protein were discarded as possible causes of the activation. Sial-T2 lacking the catalytic domain failed to promote Sial-T1 activation. Since Gal-T1, Sial-T1 and Sial-T2 form a multienzyme complex, we propose that transformation of formed GM3 into GD3 and GT3 by Sial-T2 in the complex leaves Sial-T1 unoccupied, enabled for new rounds of LacCer utilization, which results in its apparent activation.


Asunto(s)
Antígenos CD/química , Gangliósido G(M3)/química , Gangliósidos/química , Glucolípidos/química , Glicosiltransferasas/metabolismo , Lactosilceramidos/química , Animales , Células CHO , Dominio Catalítico , Cricetinae , Cricetulus , Glicosilación , Aparato de Golgi/metabolismo , Estructura Terciaria de Proteína , Transcripción Genética , Activación Transcripcional
3.
Neurochem Res ; 37(6): 1325-34, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22388569

RESUMEN

The functional link between glycolipid glycosyltransferases (GT) relies on the ability of these proteins to form organized molecular complexes. The organization, stoichiometry and composition of these complexes may impact their sorting properties, sub-Golgi localization, and may determine relative efficiency of GT in different glycolipid biosynthetic pathways. In this work, by using Förster resonance energy transfer microscopy in live CHO-K1 cells, we investigated homo- and hetero-complex formation by different GT as well as their spatial organization and molecular stoichiometry on Golgi membranes. We find that GalNAcT and GalT2 Ntd are able to form hetero-complexes in a 1:2 molar ratio at the trans-Golgi network and that GalT2 but not GalNAcT forms homo-complexes. Also, GalNAcT/GalT2 complexes exhibit a stable behavior reflected by its clustered lateral organization. These results reveals that particular topological organization of GTs may have functional implications in determining the composition of glycolipids in cellular membranes.


Asunto(s)
Galactosiltransferasas/metabolismo , Aparato de Golgi/enzimología , Complejos Multienzimáticos/metabolismo , N-Acetilgalactosaminiltransferasas/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Transferencia Resonante de Energía de Fluorescencia , Red trans-Golgi/enzimología
4.
J Neurochem ; 117(4): 589-602, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21371037

RESUMEN

Brain tissue is characterized by its high glycosphingolipid content, particularly those containing sialic acid (gangliosides). As a result of this observation, brain tissue was a focus for studies leading to the characterization of the enzymes participating in ganglioside biosynthesis, and their participation in driving the compositional changes that occur in glycolipid expression during brain development. Later on, this focus shifted to the study of cellular aspects of the synthesis, which lead to the identification of the site of synthesis in the neuronal soma and their axonal transport toward the periphery. In this review article, we will focus in subcellular aspects of the biosynthesis of glycosphingolipid oligosaccharides, particularly the mechanisms underlying the trafficking of glycosphingolipid glycosyltransferases from the endoplasmic reticulum to the Golgi, those that promote their retention in the Golgi and those that participate in their topological organization as part of the complex membrane bound machinery for the synthesis of glycosphingolipids.


Asunto(s)
Química Encefálica/genética , Química Encefálica/fisiología , Glicoesfingolípidos/genética , Glicoesfingolípidos/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Glucolípidos/biosíntesis , Glicoesfingolípidos/biosíntesis , Glicosilación , Glicosiltransferasas/metabolismo , Aparato de Golgi/metabolismo , Humanos , Pliegue de Proteína
5.
FEBS Lett ; 585(11): 1691-8, 2011 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-21420403

RESUMEN

Glycolipids constitute a complex family of amphipathic molecules structurally characterized by a hydrophilic mono- or oligo-saccharide moiety linked to a hydrophobic ceramide moiety. Due to their asymmetric distribution in cell membranes, exposing the saccharide moiety to the extracytoplasmic side of the cell, glycolipids participate in a variety of cell-cell and cell-ligand interactions. Here we summarize aspects of the cell biology of the stepwise synthesis of the saccharide moiety in the Golgi complex of cells from vertebrates. In particular we refer to the participant glycosyltransferases, with emphasis on their trafficking along the secretory pathway, their retention and organization in the Golgi complex membranes and their dependence on the Golgi complex ultra structural organization for proper function.


Asunto(s)
Glucolípidos/química , Aparato de Golgi/metabolismo , Oligosacáridos/biosíntesis , Animales , Retículo Endoplásmico/metabolismo , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Aparato de Golgi/enzimología , Humanos
6.
Neurochem Res ; 35(12): 2161-7, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21080064

RESUMEN

The conserved oligomeric Golgi (COG) complex is a eight subunit (COG1 to 8) tethering complex involved in the retrograde trafficking of multiple Golgi processing proteins. Here we studied the glycolipid synthesis status in ldlC cells, a Cog2 null mutant CHO cell line. Biochemical studies revealed a block in the coupling between LacCer and GM3 synthesis, resulting in decreased levels of GM3 in these cells. Uncoupling was not attributable to decreased activity of the glycosyltransferase that uses LacCer as acceptor substrate (SialT1). Rather, immunocytochemical experiments evidenced a mislocalization of SialT1 as consequence of the lack of Cog2 in these cells. Co-immunoprecipitation experiments disclose a Cog2 mediated interaction of SialT1 with the COG complex member Cog1. Results indicate that cycling of some Golgi glycolipid glycosyltransferases depends on the participation of the COG complex and that deficiencies in COG complex subunits, by altering their traffic and localization, affect glycolipid composition.


Asunto(s)
Gangliósido G(M3)/biosíntesis , Aparato de Golgi/enzimología , Mutación , Sialiltransferasas/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Microscopía Fluorescente , Unión Proteica
7.
J Biol Chem ; 285(53): 41472-82, 2010 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-21047787

RESUMEN

The COG (conserved oligomeric Golgi complex) is a Golgi-associated tethering complex involved in retrograde trafficking of multiple Golgi enzymes. COG deficiencies lead to misorganization of the Golgi, defective trafficking of glycosylation enzymes, and abnormal N-, O- and ceramide-linked oligosaccharides. Here, we show that in Cog2 null mutant ldlC cells, the content of sphingomyelin (SM) is reduced to ∼25% of WT cells. Sphingomyelin synthase (SMS) activity is essentially normal in ldlC cells, but in contrast with the typical Golgi localization in WT cells, in ldlC cells, transfected SMS1 localizes to vesicular structures scattered throughout the cytoplasm, which show almost no signal of co-transfected ceramide transfer protein (CERT). Cog2 transfection restores SM formation and the typical SMS1 Golgi localization phenotype. Adding exogenous N-6-[(7-nitrobenzo-2-oxa-1,3-diazol-4-yl)amino]hexanoyl-4-d-erythro-sphingosine (C(6)-NBD-ceramide) to ldlC cell cultures results in normal SM formation. Endogenous ceramide levels were 3-fold higher in ldlC cells than in WT cells, indicating that Golgi misorganization caused by Cog2 deficiency affects the delivery of ceramide to sites of SM synthesis by SMS1. Considering the importance of SM as a structural component of membranes, this finding is also worth of consideration in relation to a possible contribution to the clinical phenotype of patients suffering congenital disorders of glycosylation type II.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/química , Esfingomielinas/química , Animales , Células CHO , Cricetinae , Cricetulus , Regulación de la Expresión Génica , Glicosilación , Aparato de Golgi/metabolismo , Microscopía Confocal/métodos , Mutación , Fenotipo , Fracciones Subcelulares/metabolismo , Toxinas Biológicas/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
8.
J Biol Chem ; 285(39): 30340-6, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20650895

RESUMEN

Glycolipid glycosyltransferases (GGT) are transported from the endoplasmic reticulum (ER) to the Golgi, their site of residence, via COPII vesicles. An interaction of a (R/K)X(R/K) motif at their cytoplasmic tail (CT) with Sar1 is critical for the selective concentration in the transport vesicles. In this work using computational docking, we identify three putative binding pockets in Sar1 (sites A, B, and C) involved in the interaction with the (R/K)X(R/K) motif. Sar1 mutants with alanine replacement of amino acids in site A were tested in vitro and in cells. In vitro, mutant versions showed a reduced ability to bind immobilized peptides with the CT sequence of GalT2. In cells, Sar1 mutants (Sar1(D198A)) specifically affect the exiting of GGT from the ER, resulting in an ER/Golgi concentration ratio favoring the ER. Neither the typical Golgi localization of GM130 nor the exiting and transport of the G protein of the vesicular stomatitis virus were affected. The protein kinase inhibitor H89 produced accumulation of Sec23, Sar1, and GalT2 at the ER exit sites; Sar1(D189A) also accumulated at these sites, but in this case GalT2 remained disperse along ER membranes. The results indicate that amino acids in site A of Sar1 are involved in the interaction with the CT of GGT for concentration at ER exiting sites.


Asunto(s)
Retículo Endoplásmico/enzimología , Galactosiltransferasas/metabolismo , Aparato de Golgi/enzimología , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/metabolismo , Secuencias de Aminoácidos , Animales , Sitios de Unión , Células CHO , Vesículas Cubiertas por Proteínas de Revestimiento/enzimología , Vesículas Cubiertas por Proteínas de Revestimiento/genética , Cricetinae , Cricetulus , Retículo Endoplásmico/genética , Galactosiltransferasas/genética , Aparato de Golgi/genética , Isoquinolinas/farmacología , Ratones , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/genética , Mutación , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Sulfonamidas/farmacología , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
9.
Biochem J ; 419(2): 301-8, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19138168

RESUMEN

S-acylation (commonly known as palmitoylation) is a widespread post-translational modification that consists of the addition of a lipid molecule to cysteine residues of a protein through a thioester bond. This modification is predominantly mediated by a family of proteins referred to as PATs (palmitoyltransferases). Most PATs are polytopic membrane proteins, with four to six transmembrane domains, a conserved DHHC motif and variable C-and N-terminal regions, that are probably responsible for conferring localization and substrate specificity. There is very little additional information on the structure-function relationship of PATs. Swf1 and Pfa3 are yeast members of the DHHC family of proteins. Swf1 is responsible for the S-acylation of several transmembrane SNAREs (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptors) and other integral membrane proteins. Pfa3 is required for the palmitoylation of Vac8, a protein involved in vacuolar fusion. In the present study we describe a novel 16-amino-acid motif present at the cytosolic C-terminus of PATs, that is required for Swf1 and Pfa3 function in vivo. Within this motif, we have identified a single residue in Swf1, Tyr323, as essential for function, and this is correlated with lack of palmitoylation of Tlg1, a SNARE that is a substrate of Swf1. The equivalent mutation in Pfa3 also affects its function. These mutations are the first phenotype-affecting mutations uncovered that do not lie within the DHHC domain, for these or any other PATs. The motif is conserved in 70% of PATs from all eukaryotic organisms analysed, and may have once been present in all PATs. We have named this motif PaCCT ('Palmitoyltransferase Conserved C-Terminus').


Asunto(s)
Aciltransferasas/química , Aciltransferasas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Aciltransferasas/genética , Secuencias de Aminoácidos , Western Blotting , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutagénesis , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad
10.
J Neurosci Res ; 87(4): 857-65, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18951474

RESUMEN

Although the molecular and cellular basis of particular events that lead to the biogenesis of membranes in eukaryotic cells has been described in detail, understanding of the intrinsic complexity of the pleiotropic response by which a cell adjusts the overall activity of its endomembrane system to accomplish these requirements is limited. Here we carried out an immunocytochemical and biochemical examination of the content and quality of the endoplasmic reticulum (ER) and Golgi apparatus membranes in two in vivo situations characterized by a phase of active cell proliferation followed by a phase of declination in proliferation (rat brain tissue at early and late developmental stages) or by permanent active proliferation (gliomas and their most malignant manifestation, glioblastomas multiforme). It was found that, in highly proliferative phases of brain development (early embryo brain cells), the content of ER and Golgi apparatus membranes, measured as total lipid phosphorous content, is higher than in adult brain cells. In addition, the concentration of protein markers of ER and Golgi is also higher in early embryo brain cells and in human glioblastoma multiforme cells than in adult rat brain or in nonpathological human brain cells. Results suggest that the amount of endomembranes and the concentration of constituent functional proteins diminish as cells decline in their proliferative activity.


Asunto(s)
Encéfalo/citología , Proliferación Celular , Retículo Endoplásmico/química , Aparato de Golgi/química , Membranas Intracelulares/química , Animales , Western Blotting , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Encéfalo/ultraestructura , Retículo Endoplásmico/ultraestructura , Femenino , Glioblastoma/química , Glioblastoma/metabolismo , Glioblastoma/patología , Aparato de Golgi/ultraestructura , Humanos , Inmunohistoquímica , Membranas Intracelulares/ultraestructura , Lípidos de la Membrana/análisis , Proteínas de la Membrana/análisis , Fósforo/análisis , Ratas , Ratas Wistar
11.
J Biol Chem ; 283(45): 31163-71, 2008 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-18784083

RESUMEN

It has been demonstrated that c-Fos has, in addition to its well recognized AP-1 transcription factor activity, the capacity to associate to the endoplasmic reticulum and activate key enzymes involved in the synthesis of phospholipids required for membrane biogenesis during cell growth and neurite formation. Because membrane genesis requires the coordinated supply of all its integral membrane components, the question emerges as to whether c-Fos also activates the synthesis of glycolipids, another ubiquitous membrane component. We show that c-Fos activates the metabolic labeling of glycolipids in differentiating PC12 cells. Specifically, c-Fos activates the enzyme glucosylceramide synthase (GlcCerS), the product of which, GlcCer, is the first glycosylated intermediate in the pathway of synthesis of glycolipids. By contrast, the activities of GlcCer galactosyltransferase 1 and lactosylceramide sialyltransferase 1 are essentially unaffected by c-Fos. Co-immunoprecipitation experiments in cells co-transfected with c-Fos and a V5-tagged version of GlcCerS evidenced that both proteins participate in a physical association. c-Fos expression is tightly regulated by specific environmental cues. This strict regulation assures that lipid metabolism activation will occur as a response to cell requirements thus pointing to c-Fos as an important regulator of key membrane metabolisms in membrane biogenesis-demanding processes.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Glucosiltransferasas/metabolismo , Glucolípidos/biosíntesis , Neuritas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Animales , Diferenciación Celular/fisiología , Activación Enzimática/fisiología , Células PC12 , Fosfolípidos/biosíntesis , Unión Proteica/fisiología , Ratas , Factor de Transcripción AP-1/metabolismo
12.
Biochem J ; 412(1): 19-26, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18269347

RESUMEN

GalT2 (UDP-Gal:GA2/GM2/GD2 beta-1,3-galactosyltransferase) is a Golgi-resident type II membrane protein that participates in the synthesis of glycosphingolipids. The molecular determinants for traffic and localization of this and other glycosyltransferases are still poorly characterized. Considering the possibility that interactions with other proteins may influence these processes, in the present study we carried out a yeast two-hybrid screening using elements of the N-terminal domain of GalT2 as bait. In this screening, we identified calsenilin and its close homologue CALP (calsenilin-like protein), both members of the recoverin-NCS (neuronal calcium sensor) family of calcium-binding proteins. In vitro, GalT2 binds to immobilized recombinant CALP, and CALP binds to immobilized peptides with the GalT2 cytoplasmic tail sequence. GalT2 and calsenilin interact physically when co-expressed in CHO (Chinese-hamster ovary)-K1 cells. The expression of CALP or calsenilin affect Golgi localization of GalT2, and of two other glycosyltransferases, SialT2 (CMP-NeuAc:GM3 sialyltransferase) and GalNAcT (UDP-GalNAc:lactosylceramide/GM3/GD3 beta1-4 N-acetylgalactosaminyltransferase), by redistributing them from the Golgi to the ER (endoplasmic reticulum), whereas the localization of the VSV-G (G-protein of the vesicular stomatitis virus) or the Golgin GM130 was essentially unaffected. Conversely, the expression of GalT2 affects the localization of calsenilin and CALP by shifting a fraction of the molecules from being mostly diffuse in the cytosol, to clustered structures in the perinuclear region. These combined in vivo and in vitro results suggest that CALP and calsenilin are involved in the trafficking of Golgi glycosyltransferases.


Asunto(s)
Galactosiltransferasas/metabolismo , Proteínas de Interacción con los Canales Kv/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Cricetinae , Cricetulus , Retículo Endoplásmico/metabolismo , Galactosiltransferasas/química , Aparato de Golgi/metabolismo , Humanos , Proteínas de Interacción con los Canales Kv/fisiología , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Homología de Secuencia de Aminoácido , Distribución Tisular , Técnicas del Sistema de Dos Híbridos
13.
J Neurochem ; 103 Suppl 1: 81-90, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17986143

RESUMEN

Gangliosides are a family of glycolipids characterized by containing a variable number of sialic acid residues. Nearly, all animal cells contain at least some class of ganglioside in their membranes, but membranes from the CNS are characterized by their high content of these lipids. The synthesis of the oligosaccharide moiety of glycolipids is carried out in the Golgi complex. In this study, I will discuss the cellular and molecular basis of the organization of the glycosylating machinery in the Golgi complex, with particular attention to the mutual relationships, sub-Golgi localization, and intracellular trafficking of glycolipid glycosyltransferases, and to their relationships with the corresponding glycolipid acceptors and sugar nucleotide donors. I will also discuss how the organization of the glycosylating machinery in the Golgi may adapt to events controlling glycolipid expression.


Asunto(s)
Glucolípidos/metabolismo , Glicosiltransferasas/fisiología , Aparato de Golgi/metabolismo , Animales , Vías Biosintéticas , Glicosilación
14.
J Biol Chem ; 281(43): 32852-60, 2006 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-16950784

RESUMEN

Ganglioside glycosyltransferases organize as multienzyme complexes that localize in different sub-Golgi compartments. Here we studied whether in CHO-K1 cells lacking CMP-NeuAc: GM3 sialyltransferase (SialT2), the sub-Golgi localization of UDP-Gal:glucosylceramide beta-1,4-galactosyltransferase (GalT1) and CMP-NeuAc:lactosylceramide sialyltransferase (SialT1) complex is affected when SialT2, another member of this complex, is coexpressed. GalT1 and SialT1 sub-Golgi localization was determined by studying the effect of brefeldin A (BFA) and monensin on the synthesis of glycolipids and on the sub-Golgi localization of GalT1(1-52)-CFP (cyan fluorescent protein) and SialT1(1-54)-YFP (yellow fluorescent protein) chimeras by single cell fluorescence microscopy and by isopycnic subfractionation. We found that BFA, and also monensin, impair the synthesis of glycolipids beyond GM3 ganglioside in wild type (WT) cells but beyond GlcCer in SialT2(+) cells. Although BFA redistributed GalT1-CFP and SialT1-YFP to the endoplasmic reticulum in WT cells, a fraction of these chimeras remained associated with a distal Golgi compartment, enriched in trans Golgi network, and recycling endosome markers in SialT2(+) cells. In BFA-treated cells, the percentage of GalT1-CFP and SialT1-YFP associated with Golgi-like membrane fractions separated by isopycnic subfractionation was higher in SialT2(+) cells than in WT cells. These effects were reverted by knocking down the expression of SialT2 with specific siRNA. Results indicate that sub-Golgi localization of glycosyltransferase complexes may change according to the relative levels of the expression of participating enzymes and reveal a capacity of the organelle to adapt the topology of the glycolipid synthesis machinery to functional states of the cell.


Asunto(s)
Galactosiltransferasas/metabolismo , Glucolípidos/biosíntesis , Aparato de Golgi/enzimología , N-Acetilgalactosaminiltransferasas/metabolismo , Sialiltransferasas/metabolismo , Animales , Antibacterianos/farmacología , Antiprotozoarios/farmacología , Biomarcadores/metabolismo , Brefeldino A/farmacología , Células CHO , Centrifugación Isopicnica , Células Clonales/enzimología , Cricetinae , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Monensina/farmacología , N-Acetilgalactosaminiltransferasas/química , N-Acetilgalactosaminiltransferasas/genética , ARN Interferente Pequeño/farmacología , Sialiltransferasas/química , Sialiltransferasas/genética , Fracciones Subcelulares/metabolismo , Transfección
15.
Traffic ; 7(5): 604-12, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16643282

RESUMEN

Complex glycolipid synthesis is catalyzed by different glycosyltransferases resident of the Golgi complex. Most of them are type II membrane proteins comprising a lumenal, C-terminal domain linked to an N-terminal domain (Ntd) constituted by a short cytoplasmic tail (ct), a transmembrane, and a lumenal stem regions. They concentrate selectively in different sub-Golgi compartments, in an overlapped manner, acting in succession in the addition of sugars to acceptor glycolipids. The Ntds are sufficient to localize glycosyltransferases in the Golgi complex, but it is not clear whether they also confer selective concentration in sub-Golgi compartments. Here, we studied whether the Ntd of SialT2, localized in the proximal Golgi, and the one of GalNAcT, a trans/TGN Golgi-concentrated enzyme, concentrate reporter proteins in the corresponding sub-Golgi compartment. The sub-Golgi concentration of the Ntds fused to spectral variants of the GFP was determined in CHO-K1 cells from their behavior upon addition of brefeldin A. Fluorescence microscopy and subcellular fractionation showed that the SialT2 Ntd concentrates in a proximal sub-Golgi compartment - and that of GalNAcT in TGN elements. Exchanging the transmembrane region and the cts of SialT2 and GalNAcT indicates that information for proximal or distal Golgi concentration is associated with the cts.


Asunto(s)
Aparato de Golgi/metabolismo , N-Acetilgalactosaminiltransferasas/metabolismo , Sialiltransferasas/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Estructura Terciaria de Proteína
16.
FEBS Lett ; 576(3): 487-91, 2004 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-15498585

RESUMEN

UDP-Gal:GA2/GM2/GD2/GT2 galactosyltransferase (Gal-T2) transfers galactose to the terminal N-acetylgalactosamine of either the neutral glycolipid GA2 or of the gangliosides GM2, GD2 and GT2. Previous studies revealed a tight regulation of Gal-T2 activity and mRNA expression during development of the rat CNS. Here, we study in PC12 cells the cis-acting elements involved in the activation of a fragment of 211 bp around the transcription initiation site of the mouse Gal-T2 promoter. Mutagenesis, competition experiments and functional assays showed that the Ets-1 transcription factor is involved in the activation of the Gal-T2 promoter.


Asunto(s)
Galactosiltransferasas/genética , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Células CHO , Clonación Molecular , Cricetinae , Cartilla de ADN , Galactosiltransferasas/metabolismo , Regulación Enzimológica de la Expresión Génica , Ratones , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Células PC12 , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas/genética , Proteína Proto-Oncogénica c-ets-1 , Proteínas Proto-Oncogénicas c-ets , Ratas , Proteínas Recombinantes/metabolismo , Transfección
17.
Biochem J ; 377(Pt 3): 561-8, 2004 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-14565845

RESUMEN

GEM (glycosphingolipid-enriched microdomains) are specialized detergent-resistant domains of the plasma membrane in which some gangliosides concentrate. Although genesis of GEM is considered to occur in the Golgi complex, where the synthesis of gangliosides also occurs, the issue concerning the incorporation of ganglioside species into GEM is still poorly understood. In this work, using Chinese hamster ovary K1 cell clones with different glycolipid compositions, we compared the behaviour with cold Triton X-100 solubilization of plasma membrane ganglioside species with the same species newly synthesized in Golgi membranes. We also investigated whether three ganglioside glycosyltransferases (a sialyl-, a N-acetylgalactosaminyl- and a galactosyl-transferase) are included or excluded from GEM in Golgi membranes. Our data show that an important fraction of plasma membrane G(M3), and most G(D3) and G(T3), reside in GEM. Immunocytochemical examination of G(D3)-expressing cells showed G(D3) to be distributed as cold-detergent-resistant patches in the plasma membrane. These patches did not co-localize with a glycosylphosphatidylinositol-anchored protein used as GEM marker, indicating a heterogeneous composition of plasma membrane GEM. In Golgi membranes we were unable to find evidence for GEM localization of either ganglioside glycosyltransferases or newly synthesized gangliosides. Since the same ganglioside species appear in plasma membrane GEM, it was concluded that in vivo nascent G(D3), G(T3) and G(M3) segregate from their synthesizing transferases and then enter GEM. This latter event could have taken place shortly after synthesis in the Golgi cisternae, along the secretory pathway and/or at the cell surface.


Asunto(s)
Detergentes/química , Gangliósidos/biosíntesis , Gangliósidos/metabolismo , Glicosiltransferasas/metabolismo , Aparato de Golgi/química , Membranas Intracelulares/química , Animales , Células CHO/química , Células CHO/enzimología , Células CHO/metabolismo , Extractos Celulares/química , Línea Celular , Membrana Celular/química , Cricetinae , Aparato de Golgi/enzimología , Humanos , Membranas Intracelulares/enzimología , Microdominios de Membrana/química , Octoxinol/metabolismo , Sialiltransferasas/biosíntesis
18.
Mol Biol Cell ; 14(9): 3753-66, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12972562

RESUMEN

Membrane proteins exit the endoplasmic reticulum (ER) in COPII-transport vesicles. ER export is a selective process in which transport signals present in the cytoplasmic tail (CT) of cargo membrane proteins must be recognized by coatomer proteins for incorporation in COPII vesicles. Two classes of ER export signals have been described for type I membrane proteins, the diacidic and the dihydrophobic motifs. Both motifs participate in the Sar1-dependent binding of Sec23p-Sec24p complex to the CTs during early steps of cargo selection. However, information concerning the amino acids in the CTs that interact with Sar1 is lacking. Herein, we describe a third class of ER export motif, [RK](X)[RK], at the CT of Golgi resident glycosyltransferases that is required for these type II membrane proteins to exit the ER. The dibasic motif is located proximal to the transmembrane border, and experiments of cross-linking in microsomal membranes and of binding to immobilized peptides showed that it directly interacts with the COPII component Sar1. Sar1GTP-bound to immobilized peptides binds Sec23p. Collectively, the present data suggest that interaction of the dibasic motif with Sar1 participates in early steps of selection of Golgi resident glycosyltransferases for transport in COPII vesicles.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Glicosiltransferasas/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Señales de Clasificación de Proteína/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Clonación Molecular , Cricetinae , Cricetulus , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína/fisiología , Proteínas/metabolismo , Análisis de Secuencia de Proteína , Proteínas de Transporte Vesicular
19.
J Biol Chem ; 278(41): 40262-71, 2003 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-12900410

RESUMEN

The synthesis of gangliosides is compartmentalized in the Golgi complex. In most cells, glycosylation of LacCer, GM3, and GD3 to form higher order species (GA2, GM2, GD2, GM1, GD1b) is displaced toward the most distal aspects of the Golgi and the trans-Golgi network, where the involved transferases (GalNAcT and GalT2) form physical and functional associations. Glycosylation of the simple species LacCer, GM3, and GD3, on the other hand, is displaced toward more proximal Golgi compartments, and we investigate here whether the involved transferases (GalT1, SialT1, and SialT2) share the property of forming physical associations. Co-immunoprecipitation experiments from membranes of CHO-K1 cells expressing epitope-tagged versions of these enzymes indicate that GalT1, SialT1, and SialT2 associate physically in a SialT1-dependent manner and that their N-terminal domains participate in these interactions. Microscopic fluorescence resonance energy transfer and fluorescence recovery after photobleaching in living cells confirmed the interactions, and in addition to showing a Golgi apparatus localization of the complexes, mapped their formation to the endoplasmic reticulum. Neither co-immunoprecipitation nor fluorescence resonance energy transfer detected interactions between either GalT2 or GalNAcT and GalT1 or SialT1 or SialT2. These results, and triple color imaging of Golgi-derived microvesicles in nocodazole-treated cells, suggest that ganglioside synthesis is organized in distinct units each formed by associations of particular glycosyltransferases, which concentrate in different sub-Golgi compartments.


Asunto(s)
Gangliósidos/biosíntesis , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Animales , Células CHO , Secuencia de Carbohidratos , Cricetinae , Retículo Endoplásmico/enzimología , Transferencia Resonante de Energía de Fluorescencia , Galactosiltransferasas/química , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Gangliósidos/química , Glicosiltransferasas/genética , Aparato de Golgi/enzimología , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , Pruebas de Precipitina , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sialiltransferasas/química , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Transfección
20.
Neurochem Res ; 27(7-8): 629-36, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12374198

RESUMEN

Glycolipid expression is highly regulated during development and differeniation. The control relies mainly on transcriptional modulation of key glycosyltransferases acting at the branching points of the pathway of biosynthesis. Transferases are Golgi residents that depend on N-glycosylation and oligosaccharide processing for proper folding in the endoplasmic reticulum. The N-terminal domain bears information for their transport to the Golgi, retention in the organelle and differential concentration in sub-Golgi compartments. In the Golgi, some transferases associate forming functional multienzyme complexes. It is envisaged that the machinery for synthesis in the Golgi complex, and its dynamics, constitute a potential target for fine tuning of the control of glycolipid expression according to cell demands.


Asunto(s)
Gangliósidos/biosíntesis , Animales , Secuencia de Carbohidratos , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Aparato de Golgi/metabolismo , Humanos , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA