Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 207: 108332, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38224638

RESUMEN

Proteins from the glutathione peroxidase (GPX) family, such as GPX4 or PHGPX in animals, are extensively studied for their antioxidant functions and apoptosis inhibition. GPXs can be selenium-independent or selenium-dependent, with selenium acting as a potential cofactor for GPX activity. However, the relationship of plant GPXs to these functions remains unclear. Recent research indicated an upregulation of Theobroma cacao phospholipid hydroperoxide glutathione peroxidase gene (TcPHGPX) expression during early witches' broom disease stages, suggesting the use of antioxidant mechanisms as a plant defense strategy to reduce disease progression. Witches' broom disease, caused by the hemibiotrophic fungus Moniliophthora perniciosa, induces cell death through elicitors like MpNEP2 in advanced infection stages. In this context, in silico and in vitro analyses of TcPHGPX's physicochemical and functional characteristics may elucidate its antioxidant potential and effects against cell death, enhancing understanding of plant GPXs and informing strategies to control witches' broom disease. Results indicated TcPHGPX interaction with selenium compounds, mainly sodium selenite, but without improving the protein function. Protein-protein interaction network suggested cacao GPXs association with glutathione and thioredoxin metabolism, engaging in pathways like signaling, peroxide detection for ABA pathway components, and anthocyanin transport. Tests on tobacco cells revealed that TcPHGPX reduced cell death, associated with decreased membrane damage and H2O2 production induced by MpNEP2. This study is the first functional analysis of TcPHGPX, contributing to knowledge about plant GPXs and supporting studies for witches' broom disease control.


Asunto(s)
Agaricales , Cacao , Selenio , Cacao/microbiología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Selenio/metabolismo , Peróxido de Hidrógeno/metabolismo , Antioxidantes/metabolismo , Células Vegetales , Agaricales/metabolismo , Muerte Celular , Glutatión Peroxidasa/metabolismo , Enfermedades de las Plantas/microbiología
2.
Plant Physiol Biochem ; 142: 472-481, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31430675

RESUMEN

The selenium-binding proteins are known to be inducers of apoptosis in human and animals, and have been studied as target for the treatment of various types of cancer. In plants, SBP expression has been related to abiotic and biotic stress resistance. The SBP from Theobroma cacao (TcSBP) was first identified from a cocoa-Moniliophthora perniciosa cDNA library. The present study provides details on the TcSBP gene and protein structure. Multiple alignments revealed conserved domains between SBP from plants, human and archea. Homology modeling and molecular docking were performed and showed that the TcSBP has affinity to selenite in the active CSSC site. This result was confirmed by circular dichroism of the recombinant TcSBP, which also presented thermostable behavior. RT-qPCR analysis showed that TcSBP was differentially expressed in resistant vs susceptible cacao varieties inoculated by M. perniciosa and its expression was probably due to hormone induction via cis-regulating elements present in its promotor. The presence of the CSSC domain suggested that TcSBP acted by altering oxidation/reduction of proteins during H2O2 production and programmed cell death in the final stages of the witches' broom disease. To our knowledge, this is the first in silico and in vitro analysis of the SBP from cacao.


Asunto(s)
Agaricales/metabolismo , Cacao/metabolismo , Resistencia a la Enfermedad , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/fisiología , Proteínas de Unión al Selenio/fisiología , Cacao/inmunología , Dicroismo Circular , Simulación por Computador , Simulación del Acoplamiento Molecular , Enfermedades de las Plantas/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA