Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Cell ; 35(3): mr1, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38117593

RESUMEN

The assembly of biomolecular condensate in eukaryotic cells and the accumulation of amyloid deposits in neurons are processes involving the nucleation and growth (NAG) of new protein phases. To therapeutically target protein phase separation, drug candidates are tested in in vitro assays that monitor the increase in the mass or size of the new phase. Limited mechanistic insight is, however, provided if empirical or untestable kinetic models are fitted to these progress curves. Here we present the web server NAGPKin that quantifies NAG rates using mass-based or size-based progress curves as the input data. A report is generated containing the fitted NAG parameters and elucidating the phase separation mechanisms at play. The NAG parameters can be used to predict particle size distributions of, for example, protein droplets formed by liquid-liquid phase separation (LLPS) or amyloid fibrils formed by protein aggregation. Because minimal intervention is required from the user, NAGPKin is a good platform for standardized reporting of LLPS and protein self-assembly data. NAGPKin is useful for drug discovery as well as for fundamental studies on protein phase separation. NAGPKin is freely available (no login required) at https://nagpkin.i3s.up.pt.


Asunto(s)
Amiloide , Separación de Fases , Amiloide/metabolismo
2.
mBio ; 14(4): e0063823, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37526476

RESUMEN

An important feature associated with Candida albicans pathogenicity is its ability to switch between yeast and hyphal forms, a process in which CaRas1 plays a key role. CaRas1 is activated by the guanine nucleotide exchange factor (GEF) CaCdc25, triggering hyphal growth-related signaling pathways through its conserved GTP-binding (G)-domain. An important function in hyphal growth has also been proposed for the long hypervariable region downstream the G-domain, whose unusual content of polyglutamine stretches and Q/N repeats make CaRas1 unique within Ras proteins. Despite its biological importance, both the structure of CaRas1 and the molecular basis of its activation by CaCdc25 remain unexplored. Here, we show that CaRas1 has an elongated shape and limited conformational flexibility and that its hypervariable region contains helical structural elements, likely forming an intramolecular coiled-coil. Functional assays disclosed that CaRas1-activation by CaCdc25 is highly efficient, with activities up to 2,000-fold higher than reported for human GEFs. The crystal structure of the CaCdc25 catalytic region revealed an active conformation for the α-helical hairpin, critical for CaRas1-activation, unveiling a specific region exclusive to CTG-clade species. Structural studies on CaRas1/CaCdc25 complexes also revealed an interaction surface clearly distinct from that of homologous human complexes. Furthermore, we identified an inhibitory synthetic peptide, prompting the proposal of a key regulatory mechanism for CaCdc25. To our knowledge, this is the first report of specific inhibition of the CaRas1-activation via targeting its GEF. This, together with their unique pathogen-structural features, disclose a set of novel strategies to specifically block this important virulence-related mechanism. IMPORTANCE Candida albicans is the main causative agent of candidiasis, the commonest fungal infection in humans. The eukaryotic nature of C. albicans and the rapid emergence of antifungal resistance raise the challenge of identifying novel drug targets to battle this prevalent and life-threatening disease. CaRas1 and CaCdc25 are key players in the activation of signaling pathways triggering multiple virulence traits, including the yeast-to-hypha interconversion. The structural similarity of the conserved G-domain of CaRas1 to those of human homologs and the lack of structural information on CaCdc25 has impeded progress in targeting these proteins. The unique structural and functional features for CaRas1 and CaCdc25 presented here, together with the identification of a synthetic peptide capable of specifically inhibiting the GEF activity of CaCdc25, open new possibilities to uncover new antifungal drug targets against C. albicans virulence.


Asunto(s)
Candida albicans , Candidiasis , Humanos , Antifúngicos/farmacología , Antifúngicos/metabolismo , Candidiasis/microbiología , Transducción de Señal , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifa
3.
Biomed Pharmacother ; 165: 115258, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37549460

RESUMEN

The accumulation of mutant ataxin-3 (Atx3) in neuronal nuclear inclusions is a pathological hallmark of Machado-Joseph disease (MJD), also known as Spinocerebellar Ataxia Type 3. Decreasing the protein aggregation burden is a possible disease-modifying strategy to tackle MJD and other neurodegenerative disorders for which only symptomatic treatments are currently available. We performed a drug repurposing screening to identify inhibitors of Atx3 aggregation with known toxicological and pharmacokinetic profiles. Interestingly, dopamine hydrochloride and other catecholamines are among the most potent inhibitors of Atx3 aggregation in vitro. Our results indicate that low micromolar concentrations of dopamine markedly delay the formation of mature amyloid fibrils of mutant Atx3 through the inhibition of the earlier oligomerization steps. Although dopamine itself does not cross the blood-brain barrier, dopamine levels in the brain can be increased by low doses of dopamine precursors and dopamine agonists commonly used to treat Parkinsonian symptoms. In agreement, treatment with levodopa ameliorated motor symptoms in a C. elegans model of MJD. These findings suggest a possible application of dopaminergic drugs to halt or reduce Atx3 accumulation in the brains of MJD patients.


Asunto(s)
Enfermedad de Machado-Joseph , Proteínas Nucleares , Animales , Humanos , Ataxina-3/genética , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Dopamina , Reposicionamiento de Medicamentos , Caenorhabditis elegans/metabolismo , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Dopaminérgicos
4.
Adv Sci (Weinh) ; 10(23): e2301501, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37279376

RESUMEN

Liquid-solid and liquid-liquid phase separation (PS) drives the formation of functional and disease-associated biological assemblies. Principles of phase equilibrium are here employed to derive a general kinetic solution that predicts the evolution of the mass and size of biological assemblies. Thermodynamically, protein PS is determined by two measurable concentration limits: the saturation concentration and the critical solubility. Due to surface tension effects, the critical solubility can be higher than the saturation concentration for small, curved nuclei. Kinetically, PS is characterized by the primary nucleation rate constant and a combined rate constant accounting for growth and secondary nucleation. It is demonstrated that the formation of a limited number of large condensates is possible without active mechanisms of size control and in the absence of coalescence phenomena. The exact analytical solution can be used to interrogate how the elementary steps of PS are affected by candidate drugs.


Asunto(s)
Proteínas , Tensión Superficial
5.
Curr Opin Struct Biol ; 80: 102607, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37178477

RESUMEN

From yeast to humans, polyglutamine (polyQ) repeat tracts are found frequently in the proteome and are particularly prominent in the activation domains of transcription factors. PolyQ is a polymorphic motif that modulates functional protein-protein interactions and aberrant self-assembly. Expansion of the polyQ repeated sequences beyond critical physiological repeat length thresholds triggers self-assembly and is linked to severe pathological implications. This review provides an overview of the current knowledge on the structures of polyQ tracts in the soluble and aggregated states and discusses the influence of neighboring regions on polyQ secondary structure, aggregation, and fibril morphologies. The influence of the genetic context of the polyQ-encoding trinucleotides is briefly discussed as a challenge for future endeavors in this field.


Asunto(s)
Péptidos , Humanos , Péptidos/química , Estructura Secundaria de Proteína
6.
Cells ; 12(6)2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36980167

RESUMEN

Unstable DNA repeat expansions and insertions have been found to cause more than 50 neurodevelopmental, neurodegenerative, and neuromuscular disorders. One of the main hallmarks of repeat expansion diseases is the formation of abnormal RNA or protein aggregates in the neuronal cells of affected individuals. Recent evidence indicates that alterations of the dynamic or material properties of biomolecular condensates assembled by liquid/liquid phase separation are critical for the formation of these aggregates. This is a thermodynamically-driven and reversible local phenomenon that condenses macromolecules into liquid-like compartments responsible for compartmentalizing molecules required for vital cellular processes. Disease-associated repeat expansions modulate the phase separation properties of RNAs and proteins, interfering with the composition and/or the material properties of biomolecular condensates and resulting in the formation of abnormal aggregates. Since several repeat expansions have arisen in genes encoding crucial players in transcription, this raises the hypothesis that wide gene expression dysregulation is common to multiple repeat expansion diseases. This review will cover the impact of these mutations in the formation of aberrant aggregates and how they modify gene transcription.


Asunto(s)
Expansión de las Repeticiones de ADN , Enfermedades Neuromusculares , Humanos , Expansión de las Repeticiones de ADN/genética , Mutación , Proteínas/genética , Enfermedades Neuromusculares/genética , ARN/genética , Nucleótidos
7.
Cell Commun Signal ; 21(1): 30, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737758

RESUMEN

BACKGROUND: C3G is a guanine nucleotide exchange factor (GEF) that activates Rap1 to promote cell adhesion. Resting C3G is autoinhibited and the GEF activity is released by stimuli that signal through tyrosine kinases. C3G is activated by tyrosine phosphorylation and interaction with Crk adaptor proteins, whose expression is elevated in multiple human cancers. However, the molecular details of C3G activation and the interplay between phosphorylation and Crk interaction are poorly understood. METHODS: We combined biochemical, biophysical, and cell biology approaches to elucidate the mechanisms of C3G activation. Binding of Crk adaptor proteins to four proline-rich motifs (P1 to P4) in C3G was characterized in vitro using isothermal titration calorimetry and sedimentation velocity, and in Jurkat and HEK293T cells by affinity pull-down assays. The nucleotide exchange activity of C3G over Rap1 was measured using nucleotide-dissociation kinetic assays. Jurkat cells were also used to analyze C3G translocation to the plasma membrane and the C3G-dependent activation of Rap1 upon ligation of T cell receptors. RESULTS: CrkL interacts through its SH3N domain with sites P1 and P2 of inactive C3G in vitro and in Jurkat and HEK293T cells, and these sites are necessary to recruit C3G to the plasma membrane. However, direct stimulation of the GEF activity requires binding of Crk proteins to the P3 and P4 sites. P3 is occluded in resting C3G and is essential for activation, while P4 contributes secondarily towards complete stimulation. Tyrosine phosphorylation of C3G alone causes marginal activation. Instead, phosphorylation primes C3G lowering the concentration of Crk proteins required for activation and increasing the maximum activity. Unexpectedly, optimal activation also requires the interaction of CrkL-SH2 domain with phosphorylated C3G. CONCLUSION: Our study revealed that phosphorylation of C3G by Src and Crk-binding form a two-factor mechanism that ensures tight control of C3G activation. Additionally, the simultaneous SH2 and SH3N interaction of CrkL with C3G, required for the activation, reveals a novel adaptor-independent function of Crk proteins relevant to understanding their role in physiological signaling and their deregulation in diseases. Video abstract.


Asunto(s)
Factor 2 Liberador de Guanina Nucleótido , Proteínas Nucleares , Humanos , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factor 2 Liberador de Guanina Nucleótido/metabolismo , Células HEK293 , Proteínas Nucleares/metabolismo , Nucleótidos/metabolismo , Proteínas Proto-Oncogénicas c-crk/metabolismo , Dominios Homologos src , Tirosina/metabolismo
8.
Commun Biol ; 6(1): 108, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36707645

RESUMEN

The steep increase in nontuberculous mycobacteria (NTM) infections makes understanding their unique physiology an urgent health priority. NTM synthesize two polysaccharides proposed to modulate fatty acid metabolism: the ubiquitous 6-O-methylglucose lipopolysaccharide, and the 3-O-methylmannose polysaccharide (MMP) so far detected in rapidly growing mycobacteria. The recent identification of a unique MMP methyltransferase implicated the adjacent genes in MMP biosynthesis. We report a wide distribution of this gene cluster in NTM, including slowly growing mycobacteria such as Mycobacterium avium, which we reveal to produce MMP. Using a combination of MMP purification and chemoenzymatic syntheses of intermediates, we identified the biosynthetic mechanism of MMP, relying on two enzymes that we characterized biochemically and structurally: a previously undescribed α-endomannosidase that hydrolyses MMP into defined-sized mannoligosaccharides that prime the elongation of new daughter MMP chains by a rare α-(1→4)-mannosyltransferase. Therefore, MMP biogenesis occurs through a partially conservative replication mechanism, whose disruption affected mycobacterial growth rate at low temperature.


Asunto(s)
Mycobacterium , Mycobacterium/genética , Lipopolisacáridos , Manosiltransferasas , Metiltransferasas
9.
Front Mol Biosci ; 9: 882160, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898309

RESUMEN

Proteome-wide analyses suggest that most globular proteins contain at least one amyloidogenic region, whereas these aggregation-prone segments are thought to be underrepresented in intrinsically disordered proteins (IDPs). In recent work, we reported that intrinsically disordered regions (IDRs) indeed sustain a significant amyloid load in the form of cryptic amyloidogenic regions (CARs). CARs are widespread in IDRs, but they are necessarily exposed to solvent, and thus they should be more polar and have a milder aggregation potential than conventional amyloid regions protected inside globular proteins. CARs are connected with IDPs function and, in particular, with the establishment of protein-protein interactions through their IDRs. However, their presence also appears associated with pathologies like cancer or Alzheimer's disease. Given the relevance of CARs for both IDPs function and malfunction, we developed CARs-DB, a database containing precomputed predictions for all CARs present in the IDPs deposited in the DisProt database. This web tool allows for the fast and comprehensive exploration of previously unnoticed amyloidogenic regions embedded within IDRs sequences and might turn helpful in identifying disordered interacting regions. It contains >8,900 unique CARs identified in a total of 1711 IDRs. CARs-DB is freely available for users and can be accessed at http://carsdb.ppmclab.com. To validate CARs-DB, we demonstrate that two previously undescribed CARs selected from the database display full amyloidogenic potential. Overall, CARs-DB allows easy access to a previously unexplored amyloid sequence space.

10.
Biomolecules ; 12(6)2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35740918

RESUMEN

A conserved, 26-residue sequence [AA(X2)[A/G][G/L](X2)GDV[I/L](X2)[V/L]NGE(X1)V(X6)] and corresponding structure repeating module were identified within the HtrA protease family using a non-redundant set (N = 20) of publicly available structures. While the repeats themselves were far from sequence perfect, they had notable conservation to a statistically significant level. Three or more repetitions were identified within each protein despite being statistically expected to randomly occur only once per 1031 residues. This sequence repeat was associated with a six stranded antiparallel ß-barrel module, two of which are present in the core of the structures of the PA clan of serine proteases, while a modified version of this module could be identified in the PDZ-like domains. Automated structural alignment methods had difficulties in superimposing these ß-barrels, but the use of a target human HtrA2 structure showed that these modules had an average RMSD across the set of structures of less than 2 Å (mean and median). Our findings support Dayhoff's hypothesis that complex proteins arose through duplication of simpler peptide motifs and domains.


Asunto(s)
Serina Endopeptidasas , Serina Proteasas , Humanos , Péptidos/química , Serina Endopeptidasas/metabolismo , Serina Proteasas/química , Serina Proteasas/genética
11.
Cells ; 11(12)2022 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-35741099

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is caused by the expansion of a glutamine repeat in the protein ataxin-3, which is deposited as intracellular aggregates in affected brain regions. Despite the controversial role of ataxin-3 amyloid structures in SCA3 pathology, the identification of molecules with the capacity to prevent aberrant self-assembly and stabilize functional conformation(s) of ataxin-3 is a key to the development of therapeutic solutions. Amyloid-specific kinetic assays are routinely used to measure rates of protein self-assembly in vitro and are employed during screening for fibrillation inhibitors. The high tendency of ataxin-3 to assemble into oligomeric structures implies that minor changes in experimental conditions can modify ataxin-3 amyloid assembly kinetics. Here, we determine the self-association rates of ataxin-3 and present a detailed study of the aggregation of normal and pathogenic ataxin-3, highlighting the experimental conditions that should be considered when implementing and validating ataxin-3 amyloid progress curves in different settings and in the presence of ataxin-3 interactors. This assay provides a unique and robust platform to screen for modulators of the first steps of ataxin-3 aggregation-a starting point for further studies with cell and animal models of SCA3.


Asunto(s)
Amiloide , Enfermedad de Machado-Joseph , Amiloide/metabolismo , Animales , Ataxina-3/metabolismo , Encéfalo/metabolismo , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Péptidos/metabolismo
12.
Nucleic Acids Res ; 50(D1): D480-D487, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34850135

RESUMEN

The Database of Intrinsically Disordered Proteins (DisProt, URL: https://disprot.org) is the major repository of manually curated annotations of intrinsically disordered proteins and regions from the literature. We report here recent updates of DisProt version 9, including a restyled web interface, refactored Intrinsically Disordered Proteins Ontology (IDPO), improvements in the curation process and significant content growth of around 30%. Higher quality and consistency of annotations is provided by a newly implemented reviewing process and training of curators. The increased curation capacity is fostered by the integration of DisProt with APICURON, a dedicated resource for the proper attribution and recognition of biocuration efforts. Better interoperability is provided through the adoption of the Minimum Information About Disorder (MIADE) standard, an active collaboration with the Gene Ontology (GO) and Evidence and Conclusion Ontology (ECO) consortia and the support of the ELIXIR infrastructure.


Asunto(s)
Bases de Datos de Proteínas , Proteínas Intrínsecamente Desordenadas/metabolismo , Anotación de Secuencia Molecular , Programas Informáticos , Secuencia de Aminoácidos , ADN/genética , ADN/metabolismo , Conjuntos de Datos como Asunto , Ontología de Genes , Humanos , Internet , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Unión Proteica , ARN/genética , ARN/metabolismo
13.
SLAS Discov ; 26(3): 373-382, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32981414

RESUMEN

The throughput level currently reached by automatic liquid handling and assay monitoring techniques is expected to facilitate the discovery of new modulators of enzyme activity. Judicious and dependable ways to interpret vast amounts of information are, however, required to effectively answer this challenge. Here, the 3-point method of kinetic analysis is proposed as a means to significantly increase the hit success rates and decrease the number of falsely identified compounds (false positives). In this post-Michaelis-Menten approach, each screened reaction is probed in three different occasions, none of which necessarily coincide with the initial period of constant velocity. Enzymology principles rather than subjective criteria are applied to identify unwanted outliers such as assay artifacts, and then to accurately distinguish true enzyme modulation effects from false positives. The exclusion and selection criteria are defined based on the 3-point reaction coordinates, whose relative positions along the time-courses may change from well to well or from plate to plate, if necessary. The robustness and efficiency of the new method is illustrated during a small drug repurposing screening of potential modulators of the deubiquinating activity of ataxin-3, a protein implicated in Machado-Joseph disease. Apparently, intractable Z factors are drastically enhanced after (1) eliminating spurious results, (2) improving the normalization method, and (3) increasing the assay resilience to systematic and random variability. Numerical simulations further demonstrate that the 3-point analysis is highly sensitive to specific, catalytic, and slow-onset modulation effects that are particularly difficult to detect by typical endpoint assays.


Asunto(s)
Activadores de Enzimas/farmacología , Inhibidores Enzimáticos/farmacología , Enzimas/química , Ensayos Analíticos de Alto Rendimiento , Artefactos , Ataxina-3/química , Cumarinas/química , Enzimas Desubicuitinizantes/química , Descubrimiento de Drogas/métodos , Reposicionamiento de Medicamentos , Activadores de Enzimas/química , Inhibidores Enzimáticos/química , Humanos , Cinética , Proteínas Represoras/química , Sensibilidad y Especificidad , Ubiquitina/química
14.
J Mol Biol ; 433(11): 166613, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32768452

RESUMEN

Enzymatic assays are widely employed to characterize important allosteric and enzyme modulation effects. The high sensitivity of these assays can represent a serious problem if the occurrence of experimental errors surreptitiously affects the reliability of enzyme kinetics results. We have addressed this problem and found that hidden assay interferences can be unveiled by the graphical representation of progress curves in modified reaction coordinates. To render this analysis accessible to users across all levels of expertise, we have developed a webserver, interferENZY, that allows (i) an unprecedented tight quality control of experimental data, (ii) the automated identification of small and major assay interferences, and (iii) the estimation of bias-free kinetic parameters. By eliminating the subjectivity factor in kinetic data reporting, interferENZY will contribute to solving the "reproducibility crisis" that currently challenges experimental molecular biology. The interferENZY webserver is freely available (no login required) at https://interferenzy.i3s.up.pt.


Asunto(s)
Pruebas de Enzimas/métodos , Pruebas de Enzimas/normas , Internet , Programas Informáticos , Animales , Automatización , Biocatálisis , Pollos , Cinética , Muramidasa/metabolismo , Control de Calidad , Estándares de Referencia , Especificidad por Sustrato , Factores de Tiempo
15.
Front Mol Neurosci ; 13: 582488, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33328883

RESUMEN

Reports on phase separation and amyloid formation for multiple proteins and aggregation-prone peptides are recurrently used to explore the molecular mechanisms associated with several human diseases. The information conveyed by these reports can be used directly in translational investigation, e.g., for the design of better drug screening strategies, or be compiled in databases for benchmarking novel aggregation-predicting algorithms. Given that minute protocol variations determine different outcomes of protein aggregation assays, there is a strong urge for standardized descriptions of the different types of aggregates and the detailed methods used in their production. In an attempt to address this need, we assembled the Minimum Information Required for Reproducible Aggregation Experiments (MIRRAGGE) guidelines, considering first-principles and the established literature on protein self-assembly and aggregation. This consensus information aims to cover the major and subtle determinants of experimental reproducibility while avoiding excessive technical details that are of limited practical interest for non-specialized users. The MIRRAGGE table (template available in Supplementary Information) is useful as a guide for the design of new studies and as a checklist during submission of experimental reports for publication. Full disclosure of relevant information also enables other researchers to reproduce results correctly and facilitates systematic data deposition into curated databases.

16.
J Cell Sci ; 133(15)2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32620697

RESUMEN

Oligodendrocytes are the central nervous system myelin-forming cells providing axonal electrical insulation and higher-order neuronal circuitry. The mechanical forces driving the differentiation of oligodendrocyte precursor cells into myelinating oligodendrocytes are largely unknown, but likely require the spatiotemporal regulation of the architecture and dynamics of the actin and actomyosin cytoskeletons. In this study, we analyzed the expression pattern of myosin motors during oligodendrocyte development. We report that oligodendrocyte differentiation is regulated by the synchronized expression and non-uniform distribution of several members of the myosin network, particularly non-muscle myosins 2B and 2C, which potentially operate as nanomechanical modulators of cell tension and myelin membrane expansion at different cell stages.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Vaina de Mielina , Oligodendroglía , Diferenciación Celular , Miosinas/genética , Neurogénesis
17.
Phys Chem Chem Phys ; 22(28): 16143-16149, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32638771

RESUMEN

When placed in the same environment, biochemically unrelated macromolecules influence each other's biological function through macromolecular crowding (MC) effects. This has been illustrated in vitro by the effects of inert polymers on protein stability, protein structure, enzyme kinetics and protein aggregation kinetics. While a unified way to quantitatively characterize MC is still lacking, we show that the crystal solubility of lysozyme can be used to predict the influence of crowding agents on the catalytic efficiency of this enzyme. In order to capture general enthalpic effects, as well as hard entropic effects that are specific of large molecules, we tested sucrose and its cross-linked polymer Ficoll-70 as additives. Despite the different conditions of pH and ionic strength adopted, both the crystallization and the enzymatic assays point to an entropic contribution of approximately -1 kcal mol-1 caused by MC. Our results demonstrate that the thermodynamic activity of proteins is markedly increased by the reduction of accessible volume caused by the presence of macromolecular cosolutes. Unlike what is observed in protein folding studies, this MC effect cannot be reproduced using equivalent concentrations of monomeric crowding units. Applicable to any crystallizable protein, the thermodynamic interpretation of MC based on crystal solubility is expected to help in elucidating the full extent and importance of hard-type interactions in the crowded environment of the cell.


Asunto(s)
Sustancias Macromoleculares/metabolismo , Muramidasa/metabolismo , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Sustancias Macromoleculares/química , Modelos Moleculares , Muramidasa/química , Concentración Osmolar , Solubilidad , Termodinámica
18.
Microbiology (Reading) ; 166(5): 474-483, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32100712

RESUMEN

Mycobacterium hassiacum is so far the most thermophilic among mycobacteria as it grows optimally at 50 °C and up to 65 °C in a glycerol-based medium, as verified in this study. Since this and other nontuberculous mycobacteria (NTM) thrive in diverse natural and artificial environments, from where they may access and infect humans, we deemed essential to probe M. hassiacum resistance to heat, a strategy routinely used to control microbial growth in water-supply systems, as well as in the food and drink industries. In addition to possibly being a threat in its own right in rare occasions, M. hassiacum is also a good surrogate for studying other NTM species more often associated with opportunistic infection, namely Mycobacterium avium and Mycobacterium abscessus as well as their strictly pathogenic counterparts Mycobacterium tuberculosis and Mycobacterium leprae. In this regard, this thermophilic species is likely to be useful as a source of stable proteins that may provide more detailed structures of potential drug targets. Here, we investigate M. hassiacum growth at near-pasteurization temperatures and at different pHs and also characterize its thermostable glucosyl-3-phosphoglycerate synthase (GpgS), an enzyme considered essential for M. tuberculosis growth and associated with both nitrogen starvation and thermal stress in different NTM species.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glucosiltransferasas/metabolismo , Mycobacteriaceae/crecimiento & desarrollo , Mycobacteriaceae/genética , Proteínas Bacterianas/genética , ADN Bacteriano/genética , Glucosiltransferasas/genética , Concentración de Iones de Hidrógeno , Mycobacteriaceae/metabolismo , Micobacterias no Tuberculosas/genética , Micobacterias no Tuberculosas/crecimiento & desarrollo , Micobacterias no Tuberculosas/metabolismo , Pasteurización , Temperatura
19.
Bioinformatics ; 36(7): 2076-2081, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31904854

RESUMEN

MOTIVATION: Protein beta-aggregation is an important but poorly understood phenomena involved in diseases as well as in beneficial physiological processes. However, while this task has been investigated for over 50 years, very little is known about its mechanisms of action. Moreover, the identification of regions involved in aggregation is still an open problem and the state-of-the-art methods are often inadequate in real case applications. RESULTS: In this article we present AgMata, an unsupervised tool for the identification of such regions from amino acidic sequence based on a generalized definition of statistical potentials that includes biophysical information. The tool outperforms the state-of-the-art methods on two different benchmarks. As case-study, we applied our tool to human ataxin-3, a protein involved in Machado-Joseph disease. Interestingly, AgMata identifies aggregation-prone residues that share the very same structural environment. Additionally, it successfully predicts the outcome of in vitro mutagenesis experiments, identifying point mutations that lead to an alteration of the aggregation propensity of the wild-type ataxin-3. AVAILABILITY AND IMPLEMENTATION: A python implementation of the tool is available at https://bitbucket.org/bio2byte/agmata. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Enfermedad de Machado-Joseph , Proteínas , Secuencia de Aminoácidos , Ataxina-3 , Humanos
20.
Nucleic Acids Res ; 48(D1): D269-D276, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31713636

RESUMEN

The Database of Protein Disorder (DisProt, URL: https://disprot.org) provides manually curated annotations of intrinsically disordered proteins from the literature. Here we report recent developments with DisProt (version 8), including the doubling of protein entries, a new disorder ontology, improvements of the annotation format and a completely new website. The website includes a redesigned graphical interface, a better search engine, a clearer API for programmatic access and a new annotation interface that integrates text mining technologies. The new entry format provides a greater flexibility, simplifies maintenance and allows the capture of more information from the literature. The new disorder ontology has been formalized and made interoperable by adopting the OWL format, as well as its structure and term definitions have been improved. The new annotation interface has made the curation process faster and more effective. We recently showed that new DisProt annotations can be effectively used to train and validate disorder predictors. We believe the growth of DisProt will accelerate, contributing to the improvement of function and disorder predictors and therefore to illuminate the 'dark' proteome.


Asunto(s)
Bases de Datos de Proteínas , Proteínas Intrínsecamente Desordenadas/química , Ontologías Biológicas , Curaduría de Datos , Anotación de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...