Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 9(1): 7, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35042861

RESUMEN

Strong gradient systems can improve the signal-to-noise ratio of diffusion MRI measurements and enable a wider range of acquisition parameters that are beneficial for microstructural imaging. We present a comprehensive diffusion MRI dataset of 26 healthy participants acquired on the MGH-USC 3 T Connectome scanner equipped with 300 mT/m maximum gradient strength and a custom-built 64-channel head coil. For each participant, the one-hour long acquisition systematically sampled the accessible diffusion measurement space, including two diffusion times (19 and 49 ms), eight gradient strengths linearly spaced between 30 mT/m and 290 mT/m for each diffusion time, and 32 or 64 uniformly distributed directions. The diffusion MRI data were preprocessed to correct for gradient nonlinearity, eddy currents, and susceptibility induced distortions. In addition, scan/rescan data from a subset of seven individuals were also acquired and provided. The MGH Connectome Diffusion Microstructure Dataset (CDMD) may serve as a test bed for the development of new data analysis methods, such as fiber orientation estimation, tractography and microstructural modelling.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Neuroimagen , Adulto , Anciano , Conectoma , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Adulto Joven
2.
Neuroimage Clin ; 27: 102293, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32563921

RESUMEN

INTRODUCTION: White matter damage in the visual pathway is common in multiple sclerosis (MS) and is associated with retinal thinning, although the underlying mechanism of association remains unclear. The goal of this work was to evaluate the presence and extent of white matter tract integrity (WMTI) alterations in the optic radiation (OR) in people with MS and to investigate the association between WMTI metrics and retinal thinning in the eyes of MS patients without a history of optic neuritis (ON) as measured by optical coherence tomography (OCT). We hypothesized that WMTI metrics would reflect axonal damage that occurs in the OR in MS, and that axonal alterations revealed by WMTI would be associated with retinal thinning. METHODS: Twenty-nine MS patients without previous ON in at least one eye and twenty-nine age-matched healthy controls (HC) were scanned on a dedicated high-gradient 3-Tesla MRI scanner with 300 mT/m maximum gradient strength using a multi-shell diffusion MRI protocol (b = 800, 1500, 2400 s/mm2). The patients were divided into two subgroups according to history without ON (N = 18) or with ON in one eye (N = 11). Diffusion tensor imaging (DTI) metrics and WMTI metrics derived from diffusion kurtosis imaging were assessed in normal-appearing white matter (NAWM) of the OR and in focal lesions. Retinal thickness in the eyes of MS patients was measured by OCT. Student's t-test was used to assess group differences between MRI metrics. Linear regression was used to study the relationship between OCT metrics, including retinal nerve fiber layer (RNFL) and combined ganglion cell and inner plexiform layer thickness (GCL/IPL), visual acuity measures and DTI and WMTI metrics. RESULTS: OR NAWM in MS showed significantly decreased axonal water fraction (AWF) compared to HC (0.36 vs 0.39, p < 0.001), with similar trends observed in AWF of lesions compared to NAWM (0.27 vs 0.36, p < 0.001). Fractional anisotropy (FA) was lower in OR NAWM of MS patients compared to HC (0.49 vs 0.52, p < 0.001). In patients without ON, AWF was the only diffusion MRI metric that was significantly associated with average RNFL (r = 0.68, p = 0.005), adjusting for age, sex and disease duration and correcting for multiple comparisons. Of all the DTI and WMTI metrics, AWF was the strongest and most significant predictor of average RNFL thickness in MS patients without ON. There was no significant correlation between visual acuity scores and DTI or WMTI metrics after correction for multiple comparisons. CONCLUSION: Axonal damage may be the substrate of previously observed DTI alterations in the OR, as supported by the significant reduction in AWF within both NAWM and lesions of the OR in MS. Our results support the concept that axonal damage is widespread throughout the visual pathway in MS and may be mediated through trans-synaptic degeneration.


Asunto(s)
Axones/patología , Esclerosis Múltiple/patología , Fibras Nerviosas/patología , Retina/patología , Adulto , Anciano , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/fisiopatología , Neuritis Óptica/complicaciones , Vías Visuales/patología , Sustancia Blanca/patología , Adulto Joven
3.
Brain Struct Funct ; 225(4): 1277-1291, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31563995

RESUMEN

Axon diameter and density are important microstructural metrics that offer valuable insight into the structural organization of white matter throughout the human brain. We report the systematic acquisition and analysis of a comprehensive diffusion MRI data set acquired with 300 mT/m maximum gradient strength in a cohort of 20 healthy human subjects that yields distinct and consistent patterns of axon diameter index in white matter tracts of arbitrary orientation. We use a straightforward, previously validated approach to estimating indices of axon diameter and volume fraction that involves interpolating the diffusion signal perpendicular to the principal fiber orientation and fitting a three-compartment model of intra-axonal, extra-axonal and free water diffusion. The resultant maps confirm the presence of larger diameter indices in the body of corpus callosum compared to the genu and splenium, as previously reported, and show larger axon diameter index in the corticospinal tracts compared to adjacent white matter tracts such as the cingulum. An anterior-to-posterior gradient in axon diameter index is also observed, with smaller diameter indices in the frontal lobes and larger diameter indices in the parieto-occipital white matter. These observations are consistent with known trends from prior histologic studies in humans and non-human primates. Rather than serving as fully quantitative measures of axon diameter and density, our results may be considered as axon diameter- and volume fraction-weighted images that appear to be modulated by the underlying microstructure and may capture broad trends in axonal size and packing density, acknowledging that the precise origin of such modulation requires further investigation that will be facilitated by the availability of high gradient strengths for in vivo human imaging.


Asunto(s)
Axones , Encéfalo/citología , Imagen de Difusión por Resonancia Magnética , Sustancia Blanca/citología , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Modelos Neurológicos
4.
Ann Clin Transl Neurol ; 6(5): 882-892, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31139686

RESUMEN

OBJECTIVE: To evaluate alterations in apparent axon diameter and axon density obtained by high-gradient diffusion MRI in the corpus callosum of MS patients and the relationship of these advanced diffusion MRI metrics to neurologic disability and cognitive impairment in MS. METHODS: Thirty people with MS (23 relapsing-remitting MS [RRMS], 7 progressive MS [PMS]) and 23 healthy controls were scanned on a human 3-tesla (3T) MRI scanner equipped with 300 mT/m maximum gradient strength using a comprehensive multishell diffusion MRI protocol. Data were fitted to a three-compartment geometric model of white matter to estimate apparent axon diameter and axon density in the midline corpus callosum. Neurologic disability and cognitive function were measured using the Expanded Disability Status Scale (EDSS), Multiple Sclerosis Functional Composite (MSFC), and Minimal Assessment of Cognitive Function in MS battery. RESULTS: Apparent axon diameter was significantly larger and axon density reduced in the normal-appearing corpus callosum (NACC) of MS patients compared to healthy controls, with similar trends seen in PMS compared to RRMS. Larger apparent axon diameter in the NACC of MS patients correlated with greater disability as measured by the EDSS (r = 0.555, P = 0.007) and poorer performance on the Symbol Digits Modalities Test (r = -0.593, P = 0.008) and Brief Visuospatial Memory Test-Revised (r = -0.632, P < 0.01), tests of interhemispheric processing speed and new learning and memory, respectively. INTERPRETATION: Apparent axon diameter in the corpus callosum obtained from high-gradient diffusion MRI is a potential imaging biomarker that may be used to understand the development and progression of cognitive impairment in MS.


Asunto(s)
Axones/patología , Disfunción Cognitiva/patología , Cuerpo Calloso/patología , Esclerosis Múltiple/patología , Adulto , Imagen de Difusión por Resonancia Magnética , Evaluación de la Discapacidad , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Crónica Progresiva/patología , Esclerosis Múltiple Recurrente-Remitente/patología
5.
Cogn Affect Behav Neurosci ; 19(2): 296-308, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30426310

RESUMEN

The role of semantic features, which are distinctive (e.g., a zebra's stripes) or shared (e.g. has four legs) for accessing a concept, has been studied in detail in early neurodegenerative disease such as semantic dementia (SD). However, potential neural underpinnings of such processing have not been studied in healthy adults. The current study examines neural activation patterns using fMRI while participants completed a feature verification task, in which they identified shared or distinctive semantic features for a set of natural kinds and man-made artifacts. The results showed that the anterior temporal lobe bilaterally is an important area for processing distinctive features, and that this effect is stronger within natural kinds than man-made artifacts. These findings provide converging evidence from healthy adults that is consistent with SD research, and support a model of semantic memory in which patterns of specificity of semantic information can partially explain differences in neural activation between categories.


Asunto(s)
Encéfalo/fisiología , Formación de Concepto/fisiología , Reconocimiento Visual de Modelos/fisiología , Semántica , Mapeo Encefálico , Lóbulo Frontal/fisiología , Humanos , Imagen por Resonancia Magnética , Lóbulo Parietal/fisiología , Lóbulo Temporal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...