Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Hum Reprod ; 26(12): 938-952, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33118034

RESUMEN

Offspring born to obese and diabetic mothers are prone to metabolic diseases, a phenotype that has been linked to mitochondrial dysfunction and endoplasmic reticulum (ER) stress in oocytes. In addition, metabolic diseases impact the architecture and function of mitochondria-ER contact sites (MERCs), changes which associate with mitofusin 2 (MFN2) repression in muscle, liver and hypothalamic neurons. MFN2 is a potent modulator of mitochondrial metabolism and insulin signaling, with a key role in mitochondrial dynamics and tethering with the ER. Here, we investigated whether offspring born to mice with MFN2-deficient oocytes are prone to obesity and diabetes. Deletion of Mfn2 in oocytes resulted in a profound transcriptomic change, with evidence of impaired mitochondrial and ER function. Moreover, offspring born to females with oocyte-specific deletion of Mfn2 presented increased weight gain and glucose intolerance. This abnormal phenotype was linked to decreased insulinemia and defective insulin signaling, but not mitochondrial and ER defects in offspring liver and skeletal muscle. In conclusion, this study suggests a link between disrupted mitochondrial/ER function in oocytes and increased risk of metabolic diseases in the progeny. Future studies should determine whether MERC architecture and function are altered in oocytes from obese females, which might contribute toward transgenerational transmission of metabolic diseases.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Oocitos/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Femenino , GTP Fosfohidrolasas/genética , Homeostasis/fisiología , Ratones , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Músculo Esquelético/metabolismo , Transducción de Señal
2.
Front Genet ; 11: 762, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32760430

RESUMEN

There is evidence of a purifying filter acting in the female germline to prevent the expansion of deleterious mutations in the mitochondrial DNA (mtDNA). Given our poor understanding of this filter, here we investigate the competence of the mouse embryo to eliminate dysfunctional mitochondria. Toward that, mitochondria were damaged by photoirradiation of NZB/BINJ zygotes loaded with chloromethyl-X-rosamine (CMXRos). The resultant cytoplasm was then injected into C57BL/6J zygotes to track the levels of NZB/BINJ mtDNA during the preimplantation development. About 30% of NZB/BINJ mtDNA was present after injection, regardless of using photoirradiated or non-photoirradiated cytoplasmic donors. Moreover, injection of photoirradiated-derived cytoplasm did not impact development into blastocysts. However, lower levels of NZB/BINJ mtDNA were present in blastocysts when comparing injection of photoirradiated (24.7% ± 1.43) versus non-photoirradiated (31.4% ± 1.43) cytoplasm. Given that total mtDNA content remained stable between stages (zygotes vs. blastocysts) and treatments (photoirradiated vs. non-photoirradiated), these results indicate that the photoirradiated-derived mtDNA was replaced by recipient mtDNA in blastocysts. Unexpectedly, treatment with rapamycin prevented the drop in NZB/BINJ mtDNA levels associated with injection of photoirradiated cytoplasm. Additionally, analysis of mitochondria-autophagosome colocalization provided no evidence that photoirradiated mitochondria were eliminated by autophagy. In conclusion, our findings give evidence that the mouse embryo is competent to mitigate the levels of damaged mitochondria, which might have implications to the transmission of mtDNA-encoded disease.

3.
FASEB J ; 34(6): 7644-7660, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32281181

RESUMEN

Mitochondrial function, largely regulated by the dynamics of this organelle, is inextricably linked to the oocyte health. In comparison with most somatic cells, mitochondria in oocytes are smaller and rounder in appearance, suggesting limited fusion. The functional implications of this distinct morphology, and how changes in the mitochondrial shape translate to mitochondrial function in oogenesis is little understood. We, therefore, asked whether the pro-fusion proteins mitofusins 1 (MFN1) and 2 (MFN2) are required for the oocyte development. Here we show that oocyte-specific deletion of Mfn1, but not Mfn2, prevents the oocyte growth and ovulation due to a block in folliculogenesis. We pinpoint the loss of oocyte growth and ovulation to impaired PI3K-Akt signaling and disrupted oocyte-somatic cell communication. In support, the double loss of Mfn1 and Mfn2 partially rescues the impaired PI3K-Akt signaling and defects in oocyte development secondary to the single loss of Mfn1. Together, this work demonstrates that the mitochondrial function influences the cellular signaling during the oocyte development, and highlights the importance of distinct, nonredundant roles of MFN1 and MFN2 in oogenesis.


Asunto(s)
Comunicación Celular/fisiología , GTP Fosfohidrolasas/metabolismo , Oocitos/metabolismo , Folículo Ovárico/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/fisiología , Oocitos/fisiología , Oogénesis/fisiología , Ovulación/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología
4.
Anim Reprod ; 15(3): 231-238, 2018 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34178146

RESUMEN

Oocyte mitochondria are increased in number, smaller, and rounder in appearance than mitochondria in somatic cells. Moreover, mitochondrial numbers and activity are narrowly tied with oocyte quality because of the key role of mitochondria to oocyte maturation. During oocyte maturation, mitochondria display great mobility and cluster at specific sites to meet the high energy demand. Conversely, oocyte mitochondria are not required during early oogenesis as coupling with granulosa cells is sufficient to support gamete's needs. In part, this might be explained by the importance of protecting mitochondria from oxidative damage that result in mutations in mitochondrial DNA (mtDNA). Considering mitochondria are transmitted exclusively by the mother, oocytes with mtDNA mutations may lead to diseases in offspring. Thus, to counterbalance mutation expansion, the oocyte has developed specific mechanisms to filter out deleterious mtDNA molecules. Herein, we discuss the role of mitochondria on oocyte developmental potential and recent evidence supporting a purifying filter against deleterious mtDNA mutations in oocytes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...