Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cardiovasc Res ; 120(1): 69-81, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38078368

RESUMEN

AIMS: Duchenne muscular dystrophy (DMD)-associated cardiomyopathy is a serious life-threatening complication, the mechanisms of which have not been fully established, and therefore no effective treatment is currently available. The purpose of the study was to identify new molecular signatures of the cardiomyopathy development in DMD. METHODS AND RESULTS: For modelling of DMD-associated cardiomyopathy, we prepared three pairs of isogenic control and dystrophin-deficient human induced pluripotent stem cell (hiPSC) lines. Two isogenic hiPSC lines were obtained by CRISPR/Cas9-mediated deletion of DMD exon 50 in unaffected cells generated from healthy donor and then differentiated into cardiomyocytes (hiPSC-CM). The latter were subjected to global transcriptomic and proteomic analyses followed by more in-depth investigation of selected pathway and pharmacological modulation of observed defects. Proteomic analysis indicated a decrease in the level of mitoNEET protein in dystrophin-deficient hiPSC-CM, suggesting alteration in iron metabolism. Further experiments demonstrated increased labile iron pool both in the cytoplasm and mitochondria, a decrease in ferroportin level and an increase in both ferritin and transferrin receptor in DMD hiPSC-CM. Importantly, CRISPR/Cas9-mediated correction of the mutation in the patient-derived hiPSC reversed the observed changes in iron metabolism and restored normal iron levels in cardiomyocytes. Moreover, treatment of DMD hiPSC-CM with deferoxamine (DFO, iron chelator) or pioglitazone (mitoNEET stabilizing compound) decreased the level of reactive oxygen species in DMD hiPSC-CM. CONCLUSION: To our knowledge, this study demonstrated for the first time impaired iron metabolism in human DMD cardiomyocytes, and potential reversal of this effect by correction of DMD mutation or pharmacological treatment. This implies that iron overload-regulating compounds may serve as novel therapeutic agents in DMD-associated cardiomyopathy.


Asunto(s)
Cardiomiopatías , Células Madre Pluripotentes Inducidas , Distrofia Muscular de Duchenne , Humanos , Cardiomiopatías/metabolismo , Sistemas CRISPR-Cas , Distrofina , Edición Génica/métodos , Homeostasis , Células Madre Pluripotentes Inducidas/metabolismo , Hierro/metabolismo , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Miocitos Cardíacos/metabolismo , Proteómica
2.
Cells ; 12(20)2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37887309

RESUMEN

The blackening of cut carrots causes substantial economic losses to the food industry. Blackening was not observed in carrots that had been stored underground for less than a year, but the susceptibility to blackening increased with the age of the carrots that were stored underground for longer periods. Samples of black, border, and orange tissues from processed carrot batons and slices, prepared under industry standard conditions, were analyzed to identify the molecular and metabolic mechanisms underpinning processing-induced blackening. The black tissues showed substantial molecular and metabolic rewiring and large changes in the cell wall structure, with a decreased abundance of xyloglucan, pectins (homogalacturonan, rhamnogalacturonan-I, galactan and arabinan), and higher levels of lignin and other phenolic compounds when compared to orange tissues. Metabolite profiling analysis showed that there was a major shift from primary to secondary metabolism in the black tissues, which were depleted in sugars, amino acids, and tricarboxylic acid (TCA) cycle intermediates but were rich in phenolic compounds. These findings suggest that processing triggers a release from quiescence. Transcripts encoding proteins associated with secondary metabolism were less abundant in the black tissues, but there were no increases in transcripts associated with oxidative stress responses, programmed cell death, or senescence. We conclude that restraining quiescence release alters cell wall metabolism and composition, particularly regarding pectin composition, in a manner that increases susceptibility to blackening upon processing.


Asunto(s)
Daucus carota , Daucus carota/metabolismo , Células Vegetales , Lignina/metabolismo , Pared Celular/química
3.
Proc Natl Acad Sci U S A ; 120(7): e2216640120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36745781

RESUMEN

The early embryo of the cockroach Blattella germanica exhibits high E93 expression. In general, E93 triggers adult morphogenesis during postembryonic development. Here we show that E93 is also crucial in early embryogenesis in the cockroach, as a significant number of E93-depleted embryos are unable to develop the germ band under maternal RNAi treatment targeting E93. Moreover, transcriptomic analysis indicates that E93 depletion results in important gene expression changes in the early embryo, and many of the differentially expressed genes are involved in development. Then, using public databases, we gathered E93 expression data in embryo and preadult stages, finding that embryonic expression of E93 is high in hemimetabolan species (whose juveniles, or nymphs, are similar to the adult) and low in holometabolans (whose juveniles, or larvae, are different from the adult). E93 expression is also low in Thysanoptera and in Hemiptera Sternorrhyncha, hemimetabolans with postembryonic quiescent stages, as well as in Odonata, the nymph of which is very different from the adult. In ametabolans, such as the Zygentoma Thermobia domestica, E93 transcript levels are very high in the early embryo, whereas during postembryonic development they are medium and relatively constant. We propose the hypothesis that during evolution, a reduction of E93 expression in the embryo of hemimetabolans facilitated the larval development and the emergence of holometaboly. Independent decreases of E93 transcripts in the embryo of Odonata, Thysanoptera, and different groups of Hemiptera Sternorrhyncha would have allowed the development of modified juvenile stages adapted to specific ecophysiological conditions.


Asunto(s)
Hemípteros , Insectos , Animales , Insectos/metabolismo , Metamorfosis Biológica/genética , Larva , Hemípteros/genética , Interferencia de ARN , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/genética
4.
Genes (Basel) ; 12(6)2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34205210

RESUMEN

Miniature inverted-repeat transposable elements (MITEs) are the most abundant group of Class II mobile elements in plant genomes. Their presence in genic regions may alter gene structure and expression, providing a new source of functional diversity. Owing to their small size and lack of coding capacity, the identification of MITEs has been demanding. However, the increasing availability of reference genomes and bioinformatic tools provides better means for the genome-wide identification and analysis of MITEs and for the elucidation of their contribution to the evolution of plant genomes. We mined MITEs in the carrot reference genome DH1 using MITE-hunter and developed a curated carrot MITE repository comprising 428 families. Of the 31,025 MITE copies spanning 10.34 Mbp of the carrot genome, 54% were positioned in genic regions. Stowaways and Tourists were frequently present in the vicinity of genes, while Mutator-like MITEs were relatively more enriched in introns. hAT-like MITEs were relatively more frequently associated with transcribed regions, including untranslated regions (UTRs). Some carrot MITE families were shared with other Apiaceae species. We showed that hAT-like MITEs were involved in the formation of new splice variants of insertion-harboring genes. Thus, carrot MITEs contributed to the accretion of new diversity by altering transcripts and possibly affecting the regulation of many genes.


Asunto(s)
Elementos Transponibles de ADN , Daucus carota/genética , Secuencias Invertidas Repetidas , Genes de Plantas
5.
Genes (Basel) ; 12(5)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069875

RESUMEN

The AT-hook motif containing nuclear localized (AHL) gene family, controlling various developmental processes, is conserved in land plants. They comprise Plant and Prokaryote Conserved (PPC) domain and one or two AT-hook motifs. DcAHLc1 has been proposed as a candidate gene governing the formation of the carrot storage root. We identified and in-silico characterized carrot AHL proteins, performed phylogenetic analyses, investigated their expression profiles and constructed gene coexpression networks. We found 47 AHL genes in carrot and grouped them into two clades, A and B, comprising 29 and 18 genes, respectively. Within Clade-A, we distinguished three subclades, one of them grouping noncanonical AHLs differing in their structure (two PPC domains) and/or cellular localization (not nucleus). Coexpression network analysis attributed AHLs expressed in carrot roots into four of the 72 clusters, some of them showing a large number of interactions. Determination of expression profiles of AHL genes in various tissues and samples provided basis to hypothesize on their possible roles in the development of the carrot storage root. We identified a group of rapidly evolving noncanonical AHLs, possibly differing functionally from typical AHLs, as suggested by their expression profiles and their predicted cellular localization. We pointed at several AHLs likely involved in the development of the carrot storage root.


Asunto(s)
Secuencias AT-Hook/genética , Daucus carota/crecimiento & desarrollo , Daucus carota/genética , Desarrollo de la Planta/genética , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Regulación de la Expresión Génica de las Plantas/genética , Filogenia , Transcriptoma/genética
6.
Int J Mol Sci ; 21(12)2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32549408

RESUMEN

BACKGROUND: Diverse groups of carrot cultivars have been developed to meet consumer demands and industry needs. Varietal groups of the cultivated carrot are defined based on the shape of roots. However, little is known about the genetic basis of root shape determination. METHODS: Here, we used 307 carrot plants from 103 open-pollinated cultivars for a genome wide association study to identify genomic regions associated with the storage root morphology. RESULTS: A 180 kb-long region on carrot chromosome 1 explained 10% of the total observed phenotypic variance in the shoulder diameter. Within that region, DcDCAF1 and DcBTAF1 genes were proposed as candidates controlling secondary growth of the carrot storage root. Their expression profiles differed between the cultivated and the wild carrots, likely indicating that their elevated expression was required for the development of edible roots. They also showed higher expression at the secondary root growth stage in cultivars producing thick roots, as compared to those developing thin roots. CONCLUSIONS: We provided evidence for a likely involvement of DcDCAF1 and/or DcBTAF1 in the development of the carrot storage root and developed a genotyping assay facilitating the identification of variants in the region on carrot chromosome 1 associated with secondary growth of the carrot root.


Asunto(s)
Biología Computacional/métodos , Daucus carota/crecimiento & desarrollo , Proteínas de Plantas/genética , Mapeo Cromosómico , Minería de Datos , Bases de Datos Genéticas , Daucus carota/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Polimorfismo de Nucleótido Simple
7.
Genes (Basel) ; 9(9)2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-30149572

RESUMEN

The carrot is the most popular root vegetable worldwide. The genetic makeup underlying the development of the edible storage root are fragmentary. Here, we report the first comparative transcriptome analysis between wild and cultivated carrot roots at multiple developmental stages. Overall, 3285, 4637, and 570 genes were differentially expressed in the cultivated carrot in comparisons made for young plants versus developing roots, young plants versus mature roots, and developing roots versus mature roots, respectively. Of those, 1916, 2645, and 475, respectively, were retained after filtering out genes showing similar profiles of expression in the wild carrot. They were assumed to be of special interest with respect to the development of the storage root. Among them, transcription factors and genes encoding proteins involved in post-translational modifications (signal transduction and ubiquitination) were mostly upregulated, while those involved in redox signaling were mostly downregulated. Also, genes encoding proteins regulating cell cycle, involved in cell divisions, development of vascular tissue, water transport, and sugar metabolism were enriched in the upregulated clusters. Genes encoding components of photosystem I and II, together with genes involved in carotenoid biosynthesis, were upregulated in the cultivated roots, as opposed to the wild roots; however, they were largely downregulated in the mature storage root, as compared with the young and developing root. The experiment produced robust resources for future investigations on the regulation of storage root formation in carrot and Apiaceae.

8.
Front Plant Sci ; 8: 725, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28536590

RESUMEN

The prevalence of non-autonomous class II transposable elements (TEs) in plant genomes may serve as a tool for relatively rapid and low-cost development of gene-associated molecular markers. Miniature inverted-repeat transposable element (MITE) copies inserted within introns can be exploited as potential intron length polymorphism (ILP) markers. ILPs can be detected by PCR with primers anchored in exon sequences flanking the target introns. Here, we designed primers for 209 DcSto (Daucus carota Stowaway-like) MITE insertion sites within introns along the carrot genome and validated them as candidate ILP markers in order to develop a set of markers for genotyping the carrot. As a proof of concept, 90 biallelic DcS-ILP markers were selected and used to assess genetic diversity of 27 accessions comprising wild Daucus carota and cultivated carrot of different root shape. The number of effective alleles was 1.56, mean polymorphism informative content was 0.27, while the average observed and expected heterozygosity was 0.24 and 0.34, respectively. Sixty-seven loci showed positive values of Wright's fixation index. Using Bayesian approach, two clusters comprising four wild and 23 cultivated accessions, respectively, were distinguished. Within the cultivated carrot gene pool, four subclusters representing accessions from Chantenay, Danvers, Imperator, and Paris Market types were revealed. It is the first molecular evidence for root-type associated diversity structure in western cultivated carrot. DcS-ILPs detected substantial genetic diversity among the studied accessions and, showing considerable discrimination power, may be exploited as a tool for germplasm characterization and analysis of genome relationships. The developed set of DcS-ILP markers is an easily accessible molecular marker genotyping system based on TE insertion polymorphism.

9.
Front Plant Sci ; 8: 12, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28149306

RESUMEN

Carrot is one of the most important vegetables worldwide, owing to its capability to develop fleshy, highly nutritious storage roots. It was domesticated ca. 1,100 years ago in Central Asia. No systematic knowledge about the molecular mechanisms involved in the domestication syndrome in carrot are available, however, the ability to form a storage root is undoubtedly the essential transition from the wild Daucus carota to the cultivated carrot. Here, we expand on the results of a previous study which identified a polymorphism showing a significant signature for selection upon domestication. We mapped the region under selection to the distal portion of the long arm of carrot chromosome 2, confirmed that it had been selected, as reflected in both the lower nucleotide diversity in the cultivated gene pool, as compared to the wild (πw/πc = 7.4 vs. 1.06 for the whole genome), and the high FST (0.52 vs. 0.12 for the whole genome). We delimited the region to ca. 37 kb in length and identified a candidate domestication syndrome gene carrying three non-synonymous single nucleotide polymorphisms and one indel systematically differentiating the wild and the cultivated accessions. This gene, DcAHLc1, belongs to the AT-hook motif nuclear localized (AHL) family of plant regulatory genes which are involved in the regulation of organ development, including root tissue patterning. AHL genes work through direct interactions with other AHL family proteins and a range of other proteins that require intercellular protein movement. Based on QTL data on root thickening we speculate that DcAHLc1 might be involved in the development of the carrot storage root, as the localization of the gene overlapped with one of the QTLs. According to haplotype information we propose that the 'cultivated' variant of DcAHLc1 has been selected from wild Central Asian carrot populations upon domestication and it is highly predominant in the western cultivated carrot gene pool. However, some primitive eastern landraces and the derived B7262 purple inbred line still carry the 'wild' variant, reflecting a likely complexity of the genetic determination of the formation of carrot storage roots.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...