Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 4): 119028, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38685297

RESUMEN

In developing economies, the decarbonization of energy sector has become a global priority for sustainable and cleaner energy system. Biohydrogen production from renewable sources of waste biomass is a good source of energy incentive that reduces the pollution. Biohydrogen has a high calorific value and emits no emissions, producing both energy security and environmental sustainability. Biohydrogen production technologies have become one of the main renewable sources of energy. The present paper entails the role of biohydrogen recovered from waste biomasses like agricultural waste (AW), organic fraction of municipal solid waste (OFMSW), food processing industrial waste (FPIW), and sewage sludge (SS) as a promising solution. The main sources of increasing yield percentage of biohydrogen generation from waste feedstock using different technologies, and process parameters are also emphasized in this review. The production paths for biohydrogen are presented in this review article, and because of advancements in R and D, biohydrogen has gained viability as a biofuel for the future and discusses potential applications in power generation, transportation, and industrial processes, emphasizing the versatility and potential for integration into existing energy infrastructure. The investigation of different biochemical technologies and methods for producing biohydrogen, including anaerobic digestion (AD), dark fermentation (DF), photo fermentation (PF), and integrated dark-photo fermentation (IDPF), has been overviewed. This analysis also discusses future research, investment, and sustainable energy options transitioning towards a low-carbon future, as well as potential problems, economic impediments, and policy-related issues with the deployment of biohydrogen in emerging nations.


Asunto(s)
Biocombustibles , Países en Desarrollo , Biocombustibles/análisis , Hidrógeno , Residuos Sólidos/análisis
2.
Environ Res ; 252(Pt 2): 118876, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582420

RESUMEN

The rapid transition towards modernization and industrialization led to an increase in urban population, resulting in paramount challenge to municipal sewage sludge management. Anaerobic digestion (AD) serves as a promising venue for energy recovery from waste-activated sludge (WAS). Addressing the challenge of breaking down floc structures and microbial cells is crucial for releasing extracellular polymeric substances and cytoplasmic macromolecules to facilitate hydrolysis and fermentation process. The present study aims to introduce a combined process of alkaline/acid pre-treatments and AD to enhance sludge digestion and biogas production. The study investigates the influence of alkali pretreatment at ambient temperature using four alkali reagents (NaOH, Ca(OH)2, Mg(OH)2, and KOH). The primary goal is to provide insights into the intricate interplay of alkali dosages (0.04-0.12 g/gTS) on key physic-chemical parameters crucial for optimizing the pre-treatment dosage. Under the optimized alkaline/acid pre-treatment condition, the TSS reduction of 18%-30% was achieved. An increase in sCOD concentration (24%-50%) signifies the enhanced hydrolysis and solubilization rate of organic substrate in WAS. Finally, the biomethane potential test (BMPT) was performed for pre-treated WAS samples. The maximum methane (CH4) yield was observed in combination A1 (244 mL/g) and D1 (253 mL/g), demonstrating the pivotal role of alkali optimization in enhancing AD efficiency. This study serves as a valuable resource to policymakers, researchers, and technocrats in addressing challenges associated to sludge management.


Asunto(s)
Biocombustibles , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Biocombustibles/análisis , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Álcalis/química , Metano , Hidróxido de Sodio/química , Hidróxido de Calcio/química , Hidróxido de Magnesio/química , Reactores Biológicos , Hidróxidos/química , Compuestos de Potasio/química
3.
J Environ Manage ; 336: 117643, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36921472

RESUMEN

Landfills/open dump sites are the final disposal facilities for municipal solid waste (MSW). These sites undergo continuous process of biochemical reactions and anaerobic degradation, which make them prone to generation of landfill gas (LFG) and leachate. Worldwide, the quantitative and qualitative assessment for leachate treatment and management has been a growing concern. The present study investigated the physico-chemical characteristics and heavy metal parameters for fresh, 3-month, 6-month and 3-year old landfill leachate samples. The total dissolved solids (13280 mg/l), alkalinity (13000 mg/l), chemical oxygen demand (42000 mg/l) and total organic carbon (16500 mg/l) was found to be maximum in 3-year old leachate sample. While, the 3 and 6-month old leachate samples had maximum heavy metal concentration. The attempt was also made to identify the key parameters responsible to enhance biogas production yield from different ages of MSW. The substrate combinations of MSW and 3-year old leachate samples was prepared at varying proportion. The study was performed in three cycles and the volume of leachate diffused in each cycle was kept constant. The control samples with no leachate diffusion was also prepared to compare the percentage increase in biogas production rate. It was found that the cumulative methane (CH4) production from fresh (358 ml/g) and 3-month old MSW (273 ml/g) was maximum, and the overall percentage increase was 43% and 32%. It was also conclusive that the excess leachate diffusion of >15 ml results in low calcination behaviour and CH4 production rate. The response surface methodology was used to correlate and validate independent input variables (volatile solids, C/N ratio and leachate concentration) responsible for maximum CH4 yield.


Asunto(s)
Metales Pesados , Eliminación de Residuos , Contaminantes Químicos del Agua , Residuos Sólidos/análisis , Contaminantes Químicos del Agua/análisis , Biocombustibles , Instalaciones de Eliminación de Residuos , Metales Pesados/análisis , Eliminación de Residuos/métodos
4.
Chemosphere ; 287(Pt 4): 132416, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34600014

RESUMEN

The healthcare community acknowledged that bio-medical wastes (BMWs) have reached a colossal level across the globe. The recent pandemic (COVID-19) has brought a deluge of contaminated waste which calls for an urgent need of treatment technology for its safe disposal. BMW generally undergoes a conservative treatment approach of incineration which in turn generates potentially toxic ash known as BMW ash. BMW ash, if directly dumped in landfill, leaches and further pollutes both land and groundwater. The present study deployed Brassica juncea [Indian Mustard (IM)], Chrysopogon zizanioides [Vetiver Grass (VG)], and Pistia stratiotes [Water Lettuce (WL)] to remediate toxicity of potentially toxic elements (PTEs) i.e., Cd, Al, Pb, Cu, Mn, Co and Zn in BMW ash both in the presence and absence of chelate with an increased dosage of toxicity. The phyto-assessment results showed that IM extracted 202.2 ± 0.1-365.5 ± 0.02, 7.8 ± 0.03-12.5 ± 0.3, 132.1 ± 0.1-327.3 ± 0.1 and >100 mg kg-1 of Al, Cd, Pb and Zn, respectively without the assistance of a chelating agent. The VG accumulated heavy metals in greater concentration up to 10.5 ± 0.1 and 290.1 ± 0.05 mg kg-1 of Cd and Zn, respectively, and similar trends were observed in the WL set-up. However, the application of an ethylene diamine tetraacetic acid (EDTA) had also increased the efficiency on an average by 20-30% for IM, 35-45% for VG, and 25-35% for WL. The experimental set-up shows that the BCF for IM, VG and WL was found to be greater than 1 for most of the PTEs. The higher value of BCF resulted in a better ability to phytoextract the heavy metals from the soil. The results suggested that IM, VG and WL have the potential to phytoextract PTEs both in the absence and presence of chelating agents.


Asunto(s)
Araceae , COVID-19 , Chrysopogon , Contaminantes del Suelo , Biodegradación Ambiental , Quelantes , Humanos , Planta de la Mostaza , SARS-CoV-2 , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
5.
Bioresour Technol ; 309: 123297, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32283483

RESUMEN

The present study targeted towards the feasibility of various agricultural residues for bio-hythane production by anaerobic digestion (AD) process without pre-treatment. Biochemical methane potential (BMP) analysis was carried out for mixed fruit waste (MFW), mixed vegetable waste (MVW), sugarcane bagasse (SB), rice husk (RH), and wheat straw (WS). The analysis of gas was carried out in gas chromatography with a thermal conductivity detector (GC-TCD). The BMP test results in the study for SB, MFW, and MVW reveal that the average percentage value of bio-hythane production was 53.64%, 43.54%, and 40.92% and that of RH and WS was 16.74% and 29.75%, respectively. The result also shows that agricultural biomass, such as WS and RH produces less % of bio-hythane due to the presence of lignocellulosic components. The main contribution of this study is to highlight the bio-hythane potential with reference to the bio-methane and bio-hydrogen productions from the agricultural residues.


Asunto(s)
Metano , Saccharum , Anaerobiosis , Biocombustibles , Biomasa , Hidrógeno , Triticum
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...