Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38779761

RESUMEN

Critical power (CP) represents an important threshold for exercise performance and fatiguability. We sought to determine the extent to which sex, hemoglobin mass (Hbmass), and skeletal muscle characteristics influence CP. Prior to CP determination (i.e., 3-5 constant work rate trials to task failure), Hbmass and skeletal muscle oxidative capacity (τ) were measured and vastus lateralis muscle biopsy samples were collected from 12 females and 12 males matched for aerobic fitness relative to fat-free mass (mean (SD); V̇O2max: 59.2 (7.7) vs. 59.5 (7.1) mL·kg FFM-1·min-1, respectively). Males had a significantly greater CP than females in absolute units (225 (28) vs. 170 (43) W; p=0.001) but not relative to body mass (3.0 (0.6) vs. 2.7 (0.6) W·kg BM-1; p=0.267) or FFM (3.6 (0.7) vs. 3.7 (0.8) W·kg FFM-1; p=0.622). Males had significantly greater W' (p ≤ 0.030) and greater Hbmass (p ≤ 0.016) than females, regardless of the normalization approach; however, there were no differences in mitochondrial protein content (p=0.375), τ (p=0.603), or MHC I proportionality (p=0.574) between males and females. Whether it was expressed in absolute or relative units, CP was positively correlated with Hbmass (0.444≤r≤0.695; p<0.05), mitochondrial protein content (0.413≤r≤0.708; p<0.05), and MHC I proportionality (0.506≤r≤0.585; p<0.05), and negatively correlated with τ when expressed in relative units only (-0.588≤r≤-0.527; p<0.05). Overall, CP was independent of sex but variability in CP was related to Hbmass and skeletal muscle characteristics. The extent to which manipulations in these physiological parameters influence CP warrants further investigation to better understand factors underpinning CP.

2.
Eur J Appl Physiol ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761193

RESUMEN

PURPOSE: The aims of the present study were to investigate blood lactate kinetics following high intensity exercise and identify the physiological determinants of 800 m running performance. METHODS: Fourteen competitive 800 m runners performed two running tests. First, participants performed a multistage graded exercise test to determine physiological indicators related to endurance performance. Second, participants performed four to six 30-s high intensity running bouts to determine post-exercise blood lactate kinetics. Using a biexponential time function, lactate exchange ability (γ1), lactate removal ability (γ2), and the quantity of lactate accumulated (QLaA) were calculated from individual blood lactate recovery data. RESULTS: 800 m running performance was significantly correlated with peak oxygen consumption (r = -0.794), γ1 and γ2 at 800 m race pace (r = -0.604 and -0.845, respectively), and QLaA at maximal running speed (r = -0.657). V ˙ O2peak and γ2 at 800 m race pace explained 83% of the variance in 800 m running performance. CONCLUSION: Our results indicate that (1) a high capacity to exchange and remove lactate, (2) a high capacity for short-term lactate accumulation and, (3) peak oxygen consumption, are critical elements of 800 m running performance. Accordingly, while lactate has primarily been utilized as a performance indicator for long-distance running, post-exercise lactate kinetics may also prove valuable as a performance determinant in middle-distance running.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38631044

RESUMEN

Classical training theory postulates that performance fatigability following a training session should be proportional to the total work done (TWD); however, this notion has been questioned. This study investigated indices of performance and perceived fatigability after primary sessions of high-intensity interval (HIIT) and constant-work rate (CWR) cycling, each followed by a cycling time-to-task-failure (TTF) bout. On separate days, 16 participants completed an incremental cycling test, and, in a randomized order, i) a TTF trial at 80% of peak power output (PPO), ii) a HIIT session and iii) a CWR session, both of which were immediately followed by a TTF trial at 80% PPO. Central and peripheral aspects of performance fatigability were measured using interpolated twitch technique, and perceptual measures were assessed prior to and following the HIIT and CWR trials, and again following the TTF trial. Despite TWD being less following HIIT (P=0.029), subsequent TTF trial was an average of 125 s shorter following HIIT vs. CWR (P<0.001), and this was accompanied by greater impairments in voluntary and electrically evoked forces (P<0.001), as well as exacerbated perceptual measures (P<0.001); however, there were no differences in any fatigue measure following the TTF trial (P≥0.149). There were strong correlations between the decline in TTF and indices of peripheral (r=0.70) and perceived fatigability (r≥0.80) measured at the end of HIIT and CWR. These results underscore the dissociation between TWD and performance fatigability and highlight the importance of peripheral components of fatigability in limiting endurance performance during high-intensity cycling exercise.

4.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R472-R483, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557152

RESUMEN

The role of muscle mass in modulating performance and perceived fatigability across the entire intensity spectrum during cycling remains unexplored. We hypothesized that at task failure (Tlim), muscle contractile function would decline more following single- (SL) versus double-leg (DL) cycling within severe and extreme intensities, but not moderate and heavy intensities. After DL and SL ramp-incremental tests, on separate days, 11 recreationally active males (V̇o2max: 49.5 ± 7.7 mL·kg-1·min-1) completed SL and DL cycling until Tlim within each intensity domain. Power output for SL trials was set at 60% of the corresponding DL trial. Before and immediately after Tlim, participants performed an isometric maximal voluntary contraction (MVC) coupled with one superimposed and three resting femoral nerve stimulations [100 Hz; 10 Hz; single twitch (Qtw)] to measure performance fatigability. Perceived fatigue, leg pain, dyspnea, and effort were collected during trials. Tlim within each intensity domain was not different between SL and DL (all P > 0.05). MVC declined more for SL versus DL following heavy- (-42 ± 16% vs. -30 ± 18%; P = 0.011) and severe-intensity cycling (-41 ± 12% vs. -31 ± 15%; P = 0.036). Similarly, peak Qtw force declined more for SL following heavy- (-31 ± 12% vs. -22 ± 10%; P = 0.007) and severe-intensity cycling (-49 ± 13% vs. -40 ± 7%; P = 0.048). Except for heavy intensity, voluntary activation reductions were similar between modes. Similarly, except for dyspnea, which was lower for SL versus DL across all domains, ratings of fatigue, pain, and effort were similar at Tlim between exercise modes. Thus, the amount of muscle mass modulates the extent of contractile function impairment in an intensity-dependent manner.NEW & NOTEWORTHY We investigated the modulatory role of muscle mass on performance and perceived fatigability across the entire intensity spectrum. Despite similar time-to-task failure, single-leg cycling resulted in greater impairments in muscle contractile function within the heavy- and severe-intensity domains, but not the moderate- and extreme-intensity domains. Perceived fatigue, pain, and effort were similar between cycling modes. This indicates that the modulatory role of muscle mass on the extent of performance fatigability is intensity domain-dependent.


Asunto(s)
Ciclismo , Fatiga Muscular , Músculo Esquelético , Humanos , Masculino , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Adulto Joven , Adulto , Percepción/fisiología , Contracción Muscular , Contracción Isométrica , Estimulación Eléctrica , Esfuerzo Físico
5.
Nutrients ; 16(6)2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38542697

RESUMEN

Oral iron supplementation is the first-line treatment for addressing iron deficiency, a concern particularly relevant to women who are susceptible to sub-optimal iron levels. Nevertheless, the impact of iron supplementation on the gut microbiota of middle-aged women remains unclear. To investigate the association between iron supplementation and the gut microbiota, healthy females aged 40-65 years (n = 56, BMI = 23 ± 2.6 kg/m2) were retrospectively analyzed from the Alberta's Tomorrow Project. Fecal samples along with various lifestyle, diet, and health questionnaires were obtained. The gut microbiota was assessed by 16S rRNA sequencing. Individuals were matched by age and BMI and classified as either taking no iron supplement, a low-dose iron supplement (6-10 mg iron/day), or high-dose iron (>100 mg/day). Compositional and functional analyses of microbiome data in relation to iron supplementation were investigated using various bioinformatics tools. Results revealed that iron supplementation had a dose-dependent effect on microbial communities. Elevated iron intake (>100 mg) was associated with an augmentation of Proteobacteria and a reduction in various taxa, including Akkermansia, Butyricicoccus, Verrucomicrobia, Ruminococcus, Alistipes, and Faecalibacterium. Metagenomic prediction further suggested the upregulation of iron acquisition and siderophore biosynthesis following high iron intake. In conclusion, adequate iron levels are essential for the overall health and wellbeing of women through their various life stages. Our findings offer insights into the complex relationships between iron supplementation and the gut microbiota in middle-aged women and underscore the significance of iron dosage in maintaining optimal gut health.


Asunto(s)
Microbioma Gastrointestinal , Persona de Mediana Edad , Humanos , Femenino , Hierro , ARN Ribosómico 16S/genética , Estudios Retrospectivos , Suplementos Dietéticos
6.
Med Sci Sports Exerc ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38376995

RESUMEN

INTRODUCTION: This study assessed the effect of individualized, domain-based exercise intensity prescription on changes in maximal oxygen uptake (V̇O2max) and submaximal thresholds. METHODS: Eighty-four young healthy participants (42 Females, 42 Males) were randomly assigned to six age, sex, and V̇O2max-matched groups (14 participants each). Groups performed continuous cycling in the 1) moderate (MOD)-, 2) lower heavy (HVY1)-, and 3) upper heavy-intensity (HVY2)- domain; interval cycling, in the form of 4) high-intensity interval training (HIIT) in the severe-intensity domain, or 5) sprint-interval training (SIT) in the extreme-intensity domain; or no exercise for, 6) control (CON). All training groups except SIT, were work-matched. Training participants completed three sessions per week for six weeks with physiological evaluations performed at PRE, MID and POST intervention. RESULTS: Compared to the change in V̇O2max (∆V̇O2max) in CON (0.1 ± 1.2 mL·kg-1·min-1), all training groups except MOD (1.8 ± 2.7 mL·kg-1·min-1), demonstrated a significant increase (p < 0.05). HIIT produced the highest increase (6.2 ± 2.8 mL·kg-1·min-1) followed by HVY2 (5.4 ± 2.3 mL·kg-1·min-1), SIT (4.7 ± 2.3 mL·kg-1·min-1), and HVY1 (3.3 ± 2.4 mL·kg-1·min-1), respectively. The Δ PO at the estimated lactate threshold (θLT) was similar across HVY1, HVY2, HIIT and SIT which were all greater than CON (p < 0.05). The Δ V̇O2 and Δ PO at θLT for MOD was not different from CON (p > 0.05). HIIT produced the highest Δ PO at maximal metabolic steady state, which was greater than CON, MOD, and SIT (p < 0.05). CONCLUSIONS: This study demonstrated that i) exercise intensity is a key component determining changes in V̇O2max and submaximal thresholds and ii) exercise intensity domain-based prescription allows for a homogenous metabolic stimulus across individuals.

7.
Am J Physiol Regul Integr Comp Physiol ; 326(3): R266-R275, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38223937

RESUMEN

The impacts of carbohydrate (CHO) availability on time to task failure (TTF) and physiological responses to exercise at the maximal lactate steady state (MLSS) have not been studied. Ten participants (3 females, 7 males) completed this double-blinded, placebo-controlled study that involved a ramp incremental test, MLSS determination, and four TTF trials at MLSS, all performed on a cycle ergometer. With the use of a combination of nutritional (CHO, 7 g/kg, and placebo, PLA, 0 g/kg drinks) and exercise interventions [no exercise (REST) and glycogen-reducing exercise (EX)], the four conditions were expected to differ in preexercise CHO availability (RESTCHO > RESTPLA > EXCHO > EXPLA). TTF at MLSS was not improved by CHO loading, as RESTCHO (57.1 [16.6] min) and RESTPLA (57.1 [15.6] min) were not different (P = 1.00); however, TTF was ∼50% shorter in EX conditions compared with REST conditions on average (P < 0.05), with EXCHO (39.1 [9.2] min) ∼90% longer than EXPLA (20.6 [6.9] min; P < 0.001). There were effects of condition for all perceptual and cardiometabolic variables when compared at isotime (P < 0.05) and task failure (TF; P < 0.05), except for ventilation, perceptual responses, and neuromuscular function measures, which were not different at TF (P > 0.05). Blood lactate concentration was stable in all conditions for participants who completed 30 min of exercise. These findings indicate that TTF at MLSS is not enhanced by preexercise CHO supplementation, but recent intense exercise decreases TTF at MLSS even with CHO supplementation. Extreme fluctuations in diet and strenuous exercise that reduce CHO availability should be avoided before MLSS determination.NEW & NOTEWORTHY Carbohydrate (CHO) loading did not increase participants' ability to cycle at their maximal lactate steady state (MLSS); however, performing a glycogen depletion task the evening before cycling at MLSS reduced the time to task failure, even when paired with a high dose of CHO. These diet and exercise interventions influenced blood lactate concentration ([BLa]) but not the stability of [BLa]. Activities that reduce CHO availability should be avoided before MLSS determination.


Asunto(s)
Ácido Láctico , Resistencia Física , Masculino , Femenino , Humanos , Resistencia Física/fisiología , Consumo de Oxígeno , Prueba de Esfuerzo , Glucógeno , Poliésteres
8.
J Appl Physiol (1985) ; 136(2): 298-312, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38059287

RESUMEN

To further refine the near-infrared spectroscopy (NIRS)-derived measure of skeletal muscle oxidative capacity in humans, we sought to determine whether the exercise stimulus intensity affected the τ value and/or influenced the magnitude of correlations with in vitro measures of mitochondrial content and in vivo indices of exercise performance. Males (n = 12) and females (n = 12), matched for maximal aerobic fitness per fat-free mass, completed NIRS-derived skeletal muscle oxidative capacity tests for the vastus lateralis following repeated contractions at 40% (τ40) and 100% (τ100) of maximum voluntary contraction, underwent a skeletal muscle biopsy of the same muscle, and performed multiple intermittent isometric knee extension tests to task failure to establish critical torque (CT). The value of τ100 (34.4 ± 7.0 s) was greater than τ40 (24.2 ± 6.9 s, P < 0.001), but the values were correlated (r = 0.688; P < 0.001). The values of τ40 (r = -0.692, P < 0.001) and τ100 (r = -0.488, P = 0.016) correlated with myosin heavy chain I percentage and several markers of mitochondrial content, including COX II protein content in whole muscle (τ40: r = -0.547, P = 0.006; τ100: r = -0.466, P = 0.022), type I pooled fibers (τ40: r = -0.547, P = 0.006; τ100: r = -0.547, P = 0.006), and type II pooled fibers (τ40: r = -0.516, P = 0.009; τ100: r = -0.635, P = 0.001). The value of τ40 (r = -0.702, P < 0.001), but not τ100 (r = -0.378, P = 0.083) correlated with critical torque (CT); however, neither value correlated with W' (τ40: r = 0.071, P = 0.753; τ100: r = 0.054, P = 0.812). Overall, the NIRS method of assessing skeletal muscle oxidative capacity is sensitive to the intensity of skeletal muscle contraction but maintains relationships to whole body fitness, isolated limb critical intensity, and mitochondrial content regardless of intensity.NEW & NOTEWORTHY Skeletal muscle oxidative capacity measured using near-infrared spectroscopy (NIRS) was lower following high-intensity compared with low-intensity isometric knee extension contractions. At both intensities, skeletal muscle oxidative capacity was correlated with protein markers of mitochondrial content (in whole muscle and pooled type I and type II muscle fibers) and critical torque. These findings highlight the importance of standardizing contraction intensity while using the NIRS method with isometric contractions and further demonstrate its validity.


Asunto(s)
Proteínas Mitocondriales , Espectroscopía Infrarroja Corta , Humanos , Masculino , Femenino , Espectroscopía Infrarroja Corta/métodos , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/fisiología , Ejercicio Físico/fisiología , Contracción Muscular , Contracción Isométrica/fisiología , Torque , Estrés Oxidativo
9.
Int J Sports Physiol Perform ; 19(1): 84-87, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37898480

RESUMEN

PURPOSE: Although running traditionally relies on critical speed (CS) as an indicator of critical intensity, portable inertial measurement units offer a potential solution for estimating running mechanical power to assess critical power (CP) in runners. The purpose of this study was to determine whether CS and CP differ when assessed using the Stryd device, a portable inertial measurement unit, and if 2 running bouts are sufficient to determine CS and CP. METHODS: On an outdoor running track, 10 trained runners (V˙O2max, 59.0 [4.2] mL·kg-1·min-1) performed 3 running time trials (TT) between 1200 and 4400 m on separate days. CS and CP were derived from 2-parameter hyperbolic speed-time and power-time models, respectively, using 2 (CS2TT and CP2TT) and 3 (CS3TT and CP3TT) TTs. Subsequently, runners performed constant-intensity running for 800 m at their calculated CS3TT and CP3TT. RESULTS: Running at the calculated CS3TT speed (3.88 [0.44] m·s-1) elicited an average Stryd running power (271 [28] W) not different from the calculated CP3TT (270 [28]; P = .940; d = 0.02), with excellent agreement between the 2 values (intraclass correlation coefficient = .980). The CS2TT (3.97 [0.42] m·s-1) was not higher than CS3TT (3.89 [0.44] m·s-1; P = .178; d = 0.46); however, CP2TT (278 [29] W) was greater than CP3TT (P = .041; d = 0.75). CONCLUSION: The running intensities at CS and CP were similar, supporting the use of running power (Stryd) as a metric of aerobic fitness and exercise prescription, and 2 trials provided a reasonable, albeit higher, estimate of CS and CP.


Asunto(s)
Prueba de Esfuerzo , Ejercicio Físico , Humanos , Consumo de Oxígeno
10.
Sensors (Basel) ; 23(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37960430

RESUMEN

We sought to determine the utility of Stryd, a commercially available inertial measurement unit, to quantify running intensity and aerobic fitness. Fifteen (eight male, seven female) runners (age = 30.2 [4.3] years; V·O2max = 54.5 [6.5] ml·kg-1·min-1) performed moderate- and heavy-intensity step transitions, an incremental exercise test, and constant-speed running trials to establish the maximal lactate steady state (MLSS). Stryd running power stability, sensitivity, and reliability were evaluated near the MLSS. Stryd running power was also compared to running speed, V·O2, and metabolic power measures to estimate running mechanical efficiency (EFF) and to determine the efficacy of using Stryd to delineate exercise intensities, quantify aerobic fitness, and estimate running economy (RE). Stryd running power was strongly associated with V·O2 (R2 = 0.84; p < 0.001) and running speed at the MLSS (R2 = 0.91; p < 0.001). Stryd running power measures were strongly correlated with RE at the MLSS when combined with metabolic data (R2 = 0.79; p < 0.001) but not in isolation from the metabolic data (R2 = 0.08; p = 0.313). Measures of running EFF near the MLSS were not different across intensities (~21%; p > 0.05). In conclusion, although Stryd could not quantify RE in isolation, it provided a stable, sensitive, and reliable metric that can estimate aerobic fitness, delineate exercise intensities, and approximate the metabolic requirements of running near the MLSS.


Asunto(s)
Ácido Láctico , Carrera , Masculino , Humanos , Femenino , Adulto , Reproducibilidad de los Resultados , Ejercicio Físico , Consumo de Oxígeno , Prueba de Esfuerzo
11.
J Physiol ; 601(23): 5295-5316, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37902588

RESUMEN

Critical torque (CT) represents the highest oxidative steady state for intermittent knee extensor exercise, but the extent to which it is influenced by skeletal muscle mitochondria and sex is unclear. Vastus lateralis muscle biopsy samples were collected from 12 females and 12 males -matched for relative maximal oxygen uptake normalized to fat-free mass (FFM) (F: 57.3 (7.5) ml (kg FFM)-1  min-1 ; M: 56.8 (7.6) ml (kg FFM)-1  min-1 ; P = 0.856) - prior to CT determination and performance fatiguability trials. Males had a lower proportion of myosin heavy chain (MHC) I isoform (40.6 (18.4)%) compared to females (59.5 (18.9)%; P = 0.021), but MHC IIa and IIx isoform distributions and protein markers of mitochondrial content were not different between sexes (P > 0.05). When normalized to maximum voluntary contraction (MVC), the relative CT (F: 42.9 (8.3)%; M: 37.9 (9.0)%; P = 0.172) and curvature constant, W' (F: 26.6 (11.0) N m s (N m)-1 ; M: 26.4 (6.5) N m s (N m)-1 ; P = 0.962) were not significantly different between sexes. All protein biomarkers of skeletal muscle mitochondrial content, as well as the proportion of MHC I isoform, positively correlated with relative CT (0.48 < r < 0.70; P < 0.05), and the proportion of MHC IIx isoform correlated positively with relative W' (r = 0.57; P = 0.007). Indices of performance fatiguability were not different between males and females for MVC- and CT-controlled trials (P > 0.05). Greater mitochondrial protein abundance was associated with attenuated declines in potentiated twitch torque for exercise at 60% MVC (P < 0.05); however, the influence of mitochondrial protein abundance on performance fatiguability was reduced when exercise was prescribed relative to CT. Whether these findings translate to whole-body exercise requires additional research. KEY POINTS: The quadriceps critical torque represents the highest intensity of intermittent knee extensor exercise for which an oxidative steady state is attainable, but its relationship with skeletal muscle mitochondrial protein abundance is unknown. Matching males and females for maximal oxygen uptake relative to fat-free mass facilitates investigations of sex differences in exercise physiology, but studies that have compared critical torque and performance fatiguability during intermittent knee extensor exercise have not ensured equal aerobic fitness between sexes. Skeletal muscle mitochondrial protein abundance was correlated with critical torque and fatigue resistance for exercise prescribed relative to maximum voluntary contraction but not for exercise performed relative to the critical torque. Differences between sexes in critical torque, skeletal muscle mitochondrial protein abundance and performance fatiguability were not statistically significant. Our results suggest that skeletal muscle mitochondrial protein abundance may contribute to fatigue resistance by influencing the critical intensity of exercise.


Asunto(s)
Rodilla , Fatiga Muscular , Humanos , Masculino , Femenino , Fatiga Muscular/fisiología , Torque , Rodilla/fisiología , Músculo Esquelético/fisiología , Mitocondrias Musculares , Fatiga , Isoformas de Proteínas , Proteínas Mitocondriales , Oxígeno , Contracción Muscular/fisiología , Electromiografía , Contracción Isométrica/fisiología
12.
Scand J Med Sci Sports ; 33(6): 872-881, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36779702

RESUMEN

There is renewed interest in the potential for interval (INT) training to increase skeletal muscle mitochondrial content including whether the response differs from continuous (CONT) training. Comparisons of INT and CONT exercise are impacted by the manner in which protocols are "matched", particularly with respect to exercise intensity, as well as inter-individual differences in training responses. We employed single-leg cycling to facilitate a within-participant design and test the hypothesis that short-term INT training would elicit a greater increase in mitochondrial content than work- and intensity-matched CONT training. Ten young healthy adults (five males and five females) completed 12 training sessions over 4 weeks with each leg. Legs were randomly assigned to complete either 30 min of CONT exercise at a challenging sustainable workload (~50% single-leg peak power output; Wpeak) or INT exercise that involved 10 × 3-min bouts at the same absolute workload. INT bouts were interspersed with 1 min of recovery at 10% Wpeak and each CONT session ended with 10 min at 10% Wpeak. Absolute and mean intensity, total training time, and volume were thus matched between legs but the pattern of exercise differed. Contrary to our hypothesis, biomarkers of mitochondrial content including citrate synthase maximal activity, mitochondrial protein content and subsarcolemmal mitochondrial volume increased after CONT (p < 0.05) but not INT training. Both training modes increased single-leg Wpeak (p < 0.01) and time to exhaustion at 70% of single-leg Wpeak (p < 0.01). In a work- and intensity-matched comparison, short-term CONT training increased skeletal muscle mitochondrial content whereas INT training did not.


Asunto(s)
Pierna , Consumo de Oxígeno , Masculino , Adulto , Femenino , Humanos , Consumo de Oxígeno/fisiología , Músculo Esquelético/fisiología , Ejercicio Físico/fisiología , Mitocondrias
13.
Med Sci Sports Exerc ; 55(4): 690-699, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36729921

RESUMEN

INTRODUCTION: The intensity, duration, and distribution of work and recovery phases during high-intensity interval training (HIIT) modulate metabolic perturbations during exercise and subsequently influence the development of performance fatigability and exercise tolerance. This study aimed to characterize neuromuscular, perceptual, and cardiorespiratory responses to work-to-rest ratio-matched HIIT protocols differing in work and rest interval duration. METHODS: Twelve healthy individuals (six women) first completed a ramp incremental test to determine 90% of peak power output, and then in three randomized visits, they completed three cycling protocols to task failure at 90% of peak power output: (i) 3- to 3-min work-to-passive rest ratio HIIT (HIIT 3min ), (ii) 1- to 1-min work-to-passive rest ratio HIIT (HIIT 1min ), and (iii) constant load (CL). Interpolated twitch technique, including maximal voluntary isometric knee extensions and femoral nerve electrical stimuli, was performed at baseline, every 6 min of work, and task failure. Perceptual and cardiorespiratory responses were recorded every 3 min and continuously across the exercises, respectively. RESULTS: The work completed during HIIT 1min (8447 ± 5124 kJ) was considerably greater than HIIT 3min (1930 ± 712 kJ) and CL (1076 ± 356) ( P < 0.001). At work-matched, HIIT 1min resulted in a lesser decline in maximal voluntary contraction and twitch force compared with HIIT 3min and CL ( P < 0.001). Perceived effort, pain, and dyspnea were least in HIIT 1min and HIIT 3min compared with CL ( P < 0.001). At task failure, HIIT 1min resulted in less voluntary activation than HIIT 3min ( P = 0.010) and CL ( P = 0.043), and engendered less twitch force decline than CL ( P = 0.021). CONCLUSIONS: Overall, the mitigated physiological and perceptual responses during shorter work periods (HIIT 1min ) enhance exercise tolerance in comparison to longer work intervals at the same intensity (HIIT 3min , CL).


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Consumo de Oxígeno , Humanos , Femenino , Consumo de Oxígeno/fisiología , Ejercicio Físico/fisiología , Rodilla/fisiología , Tolerancia al Ejercicio , Terapia por Ejercicio , Entrenamiento de Intervalos de Alta Intensidad/métodos
14.
J Appl Physiol (1985) ; 134(3): 596-609, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36701480

RESUMEN

This study aimed to characterize neuromuscular, perceptual, and cardiorespiratory responses to high-intensity interval training (HIIT) with superimposed blood flow restriction in males and females. Twenty-four, healthy individuals (n = 12 females) completed two cycling HIIT protocols to task failure (1-min work phases at 90% of peak power output interspersed by 1-min rest phases). The blood flow restriction (BFR) and control (CON) protocols were identical except for the presence and absence of BFR during rest phases, respectively. The interpolated twitch technique, including maximal voluntary isometric knee extension (MVC) and femoral nerve electrical stimuli, was performed at baseline, every six intervals, and task failure. Perceptual and cardiorespiratory responses were recorded every three intervals and continuously during exercise, respectively. Bayesian inference was used to obtain the joint posterior distribution for all parameters and evidence of an effect was determined via the marginal posterior probability (PP). The BFR shortened task duration by 57.3% compared with CON (PP > 0.99), without a sex difference. The application of BFR exacerbated the rate of decline in neuromuscular measures (MVC and twitch force output), increase of perceptual responses (perceived effort, pain, dyspnea, fatigue), and development of cardiorespiratory parameters (minute ventilation and heart rate), compared with CON (PP > 0.95). In addition, BFR exacerbated the neuromuscular, perceptual, and cardiorespiratory responses to a greater extent in females than males (PP > 0.99). Our results suggest that superimposition of blood flow restriction exacerbates psychophysiological responses to a HIIT protocol to a greater extent in females than males.NEW & NOTEWORTHY To our knowledge, no study has explored sex differences in the neuromuscular, perceptual, and cardiorespiratory indices characterizing exercise tolerance during high-intensity interval training (HIIT) with blood flow restriction (BFR) applied only during rest periods. Our results suggest that BFR elicited a decline in exercise performance that could be attributed to integration of psychophysiological responses. However, this integration was sex-dependent where females demonstrated an exacerbated rate of change in these responses compared with males.


Asunto(s)
Hemodinámica , Extremidad Inferior , Humanos , Femenino , Masculino , Teorema de Bayes , Flujo Sanguíneo Regional/fisiología , Ejercicio Físico/fisiología , Músculo Esquelético/fisiología
15.
Med Sci Sports Exerc ; 55(3): 534-547, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36251387

RESUMEN

PURPOSE: A previously established Step-Ramp-Step (SRS) exercise protocol was able to accurately predict the work rate associated with the maximal metabolic steady state (MMSS) in cyclists. The purpose of this study was to determine whether a modified SRS protocol could predict the running speed and power associated with the MMSS. METHODS: Fifteen (8 male; 7 female) runners (V̇O 2max 54.5 [6.5] mL·kg -1 ·min -1 ) were recruited for this investigation composed of four to five visits. In the first visit, runners performed a moderate intensity step (MOD), an incremental exercise test, and a heavy intensity step (HVY), on a motorized treadmill. This SRS protocol was used to predict the running speed and power associated with the MMSS (i.e., the SRS-MMSS), where running power was assessed by a wearable device (Stryd) attached to each runner's shoe. Subsequent visits were used to confirm the maximal lactate steady state (MLSS) as a proxy measure of the MMSS (i.e., the MLSS-MMSS) and to validate the SRS-MMSS speed and power estimates. RESULTS: The estimated SRS-MMSS running speed (7.2 [0.6] mph) was significantly lower than confirmed running speed at MLSS-MMSS (7.5 [0.8] mph; bias = 3.6%, P = 0.005); however, the estimated SRS-MMSS running power (241 [35] W) was not different than the MLSS-MMSS confirmed running power (240 [37] W; bias = -0.6%; P = 0.435). V̇O 2 at SRS-MMSS (3.22 [0.49] L·min -1 ) was not different than respiratory compensation point (3.26 [0.58] L·min -1 ; P = 0.430). Similarly, V̇O 2 at MLSS-MMSS (3.30 [0.54] L·min -1 ) was not different than respiratory compensation point ( P = 0.438). CONCLUSIONS: The SRS protocol allows MMSS, as measured by MLSS, to be accurately determined using running power (Stryd), but not speed, in a single laboratory visit.


Asunto(s)
Prueba de Esfuerzo , Consumo de Oxígeno , Humanos , Masculino , Femenino , Prueba de Esfuerzo/métodos , Ejercicio Físico , Ácido Láctico
16.
Front Sports Act Living ; 5: 1283316, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38186400

RESUMEN

Running biomechanics are affected by fatiguing or prolonged runs. However, no evidence to date has conclusively linked this effect to running-related injury (RRI) development or performance implications. Previous investigations using subject-specific models in running have demonstrated higher accuracy than group-based models, however, this has been infrequently applied to fatigue. In this study, two experiments were conducted to determine whether subject-specific models outperformed group-based models to classify running biomechanics during non-fatigued and fatigued conditions. In the first experiment, 16 participants performed four treadmill runs at or around the maximal lactate steady state. In the second experiment, nine participants performed five prolonged runs using commercial wearable devices. For each experiment, two segments were extracted from each trial from early and late in the run. For each participant, a random forest model was applied with a leave-one-run-out cross-validation to classify between the early (non-fatigued) and late (fatigued) segments. Additionally, group-based classifiers with a leave-one-subject-out cross validation were constructed. For experiment 1, mean classification accuracies for the single-subject and group-based classifiers were 68.2 ± 8.2% and 57.0 ± 8.9%, respectively. For experiment 2, mean classification accuracies for the single-subject and group-based classifiers were 68.9 ± 17.1% and 61.5 ± 11.7%, respectively. Variable importance rankings were consistent within participants, but these rankings differed from each participant to those of the group. Although the classification accuracies were relatively low, these findings highlight the advantage of subject-specific classifiers to detect changes in running biomechanics with fatigue and indicate the potential of using big data and wearable technology approaches in future research to determine possible connections between biomechanics and RRI.

17.
Appl Physiol Nutr Metab ; 47(12): 1160-1171, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36103724

RESUMEN

Hypoxia negatively impacts aerobic exercise, but exercise testing in hypoxia has not been studied comprehensively. To determine the effects of simulated altitude on the gas exchange threshold (GET), respiratory compensation point (RCP), and maximal oxygen uptake (V̇O2max), 24 participants (mean [SD]; 26 [4] years; 171.6 [9.7] cm; 69.2 [11.9] kg) acclimatized to mild altitude (MILD; ∼1100 m) performed three cycling ramp-incremental exercise tests (with verification stages performed at 110% of peak power output (PPO)) in simulated altitudes of 0 m (sea level, SL), 1111 m (MILD), and 2222 m (moderate altitude, MOD), in a randomized order. There were significant effects of condition (i.e., fraction of inspired oxygen [FIO2]) for GET (p = 0.001), RCP (p < 0.001), V̇O2max (p < 0.001), and PPO (p < 0.001). The V̇O2 corresponding to GET and RCP (mL·kg-1·min-1) in MOD (24.1 [4.3]; 37.3 [5.1]) were significantly lower (p < 0.05) compared to SL (27.1 [4.4]; 41.8 [6.6]) and MILD (26.8 [5.7]; 40.7 [7.3]) but similar (p > 0.05) between SL and MILD. For each increase in simulated altitude, V̇O2max (SL: 51.3 [7.4]; MILD: 50.0 [7.6]; MOD: 47.3 [7.1] mL·kg-1·min-1) and PPO (SL: 332 [80]; MILD: 327 [78]; SL: 316 [76] W) decreased significantly (p < 0.05 for all comparisons). V̇O2max values from the verification stage were lower than those measured during the ramp-incremental test (p = 0.017). Overall, a mild simulated altitude had a significant effect on V̇O2max and PPO but not GET and RCP, MOD decreased all four variables, and the inclusion of a verification stage had little effect on the determination of V̇O2max in a group of young healthy adults regardless of the FIO2. Trial registration: Open Science Framework 10.17605/OSF.IO/ZTC9E.


Asunto(s)
Altitud , Consumo de Oxígeno , Adulto , Humanos , Consumo de Oxígeno/fisiología , Estudios Cruzados , Prueba de Esfuerzo , Hipoxia/diagnóstico , Oxígeno
18.
Am J Physiol Cell Physiol ; 323(5): C1410-C1416, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36121130

RESUMEN

Brief, intense interval training describes a style of exercise characterized by short bouts of strenuous effort interspersed with recovery periods. The method increases whole body maximal oxygen uptake (V̇o2max), but the underlying physiological basis is unclear. V̇o2max represents the functional limit of the integrative oxygen cascade, which refers to the physiological steps involved in oxygen transport and utilization from atmospheric air to mitochondrial metabolism. There is insufficient evidence to definitively state which steps in the oxygen cascade are responsible for the improvement in V̇o2max after brief, intense interval training. Studies typically focus on specific physiological variables that are often characterized as "central" or "peripheral" based in part on their location in the body. Recent work suggests that training for ≥6 wk improves V̇o2max in part by increasing maximal cardiac output and expanding blood volume, responses that are expected to augment central oxygen delivery. Other responses to brief, intense interval training, including increased capillary and mitochondrial density, may contribute to increases in V̇o2max via enhanced skeletal muscle oxygen extraction and/or increased muscle diffusing capacity. This is especially evident after relatively short-term training and despite no change in central oxygen delivery factors. Mechanistic investigations, particularly employing contemporary technologies, are needed to advance our understanding of the early time course of the V̇o2max response to brief, intense interval training and the extent to which changes in specific oxygen cascade processes compare with traditional endurance training.


Asunto(s)
Ejercicio Físico , Consumo de Oxígeno , Consumo de Oxígeno/fisiología , Ejercicio Físico/fisiología , Músculo Esquelético/metabolismo , Oxígeno/metabolismo , Capilares/metabolismo , Adaptación Fisiológica
19.
Exp Physiol ; 107(11): 1265-1282, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36029041

RESUMEN

NEW FINDINGS: What is the central question of this study? What is the effect of an elevated carboxyhaemoglobin (COHb) concentration following carbon monoxide inhalation on the maximal lactate steady state (MLSS) in humans and is this effect dependent on aerobic fitness? What is the main finding and its importance? An elevated COHb concentration intensified physiological responses to exercise at the MLSS - including heart rate, ventilation and peripheral fatigue - in general and reduced the MLSS (i.e., destabilized the blood lactate concentration) in trained but not untrained males and females. ABSTRACT: This study investigated whether a lower effective [Hb], induced by carbon monoxide (CO) inhalation, reduces the peak oxygen uptake ( V ̇ O 2 peak ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ ) and the maximal lactate steady state (MLSS) and whether training status explains individual variation in these impairments. Healthy young participants completed two ramp incremental tests (n = 20, 10 female) and two trials at MLSS (n = 16, eight female) following CO rebreathe tests and sham procedures (SHAM) in random orders. All fitness variables were normalized to fat-free mass (FFM) to account for sex-related differences in body composition, and males and females were matched for aerobic fitness. The V ̇ O 2 peak ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ (mean (SD): -4.2 (3.7)%), peak power output (PPO) (-3.3 (2.2)%) and respiratory compensation point (RCP) (-6.3 (4.5)%) were reduced in CO compared with SHAM (P < 0.001 for all), but the gas exchange threshold (-3.3 (7.1)%) was not (P = 0.077). Decreases in V ̇ O 2 peak ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ (r = -0.45; P = 0.047) and PPO (r = -0.49; P = 0.029) in CO were correlated with baseline aerobic fitness. Compared to SHAM, physiological and perceptual indicators of exercise-related stress were exacerbated by CO while cycling at MLSS. Notably, the mean blood lactate concentration ([La]) increased (i.e., Δ[La] >1.0 mM) between 10 min (5.5 (1.4) mM) and 30 min (6.8 (1.3) mM; P = 0.026) in CO, with 9/16 participants classified as unstable. These unstable participants had a higher V ̇ O 2 peak ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ (66.2 (8.5) vs. 56.4 (8.8) ml kg FFM-1  min-1 , P = 0.042) and V ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ at MLSS (55.8 (7.0) vs. 44.3 (7.0) ml kg FFM-1  min-1 , P = 0.006) compared to the stable group. In conclusion, a reduced O2 -carrying capacity decreased maximal and submaximal exercise performance, with higher aerobic fitness associated with greater impairments in both.


Asunto(s)
Ácido Láctico , Consumo de Oxígeno , Femenino , Humanos , Masculino , Monóxido de Carbono , Prueba de Esfuerzo , Consumo de Oxígeno/fisiología
20.
Sensors (Basel) ; 22(11)2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35684750

RESUMEN

The purpose of this study was to determine if fatigue-related changes in biomechanics derived from an inertial measurement unit (IMU) placed at the center of mass (CoM) are reliable day-to-day. Sixteen runners performed two runs at maximal lactate steady state (MLSS) on a treadmill, one run 5% above MLSS speed, and one run 5% below MLSS speed while wearing a CoM-mounted IMU. Trials were performed to volitional exhaustion or a specified termination time. IMU features were derived from each axis and the resultant. Feature means were calculated for each subject during non-fatigued and fatigued states. Comparisons were performed between the two trials at MLSS and between all four trials. The only significant fatigue state × trial interaction was the 25th percentile of the results when comparing all trials. There were no main effects for trial for either comparison method. There were main effects for fatigue state for most features in both comparison methods. Reliability, measured by an intraclass coefficient (ICC), was good-to-excellent for most features. These results suggest that fatigue-related changes in biomechanics derived from a CoM-mounted IMU are reliable day-to-day when participants ran at or around MLSS and are not significantly affected by slight deviations in speed.


Asunto(s)
Prueba de Esfuerzo , Fatiga , Prueba de Esfuerzo/métodos , Humanos , Ácido Láctico , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...