Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35164156

RESUMEN

The article presents the modification of ash wood via surface initiated activators regenerated by electron transfer atom transfer radical polymerization mediated by elemental silver (Ag0 SI-ARGET ATRP) at a diminished catalyst concentration. Ash wood is functionalized with poly(methyl methacrylate) (PMMA) and poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) to yield wood grafted with PMMA-b-PDMAEMA-Br copolymers with hydrophobic and antibacterial properties. Fourier transform infrared (FT-IR) spectroscopy confirmed the covalent incorporation of functional ATRP initiation sites and polymer chains into the wood structure. The polymerization kinetics was followed by the analysis of the polymer grown in solution from the sacrificial initiator by proton nuclear magnetic resonance (1H NMR) and gel permeation chromatography (GPC). The polymer layer covalently attached to the wood surface was observed by scanning electron microscopy (SEM). The hydrophobic properties of hybrid materials were confirmed by water contact angle measurements. Water and sodium chloride salt aqueous solution uptake tests confirmed a significant improvement in resistance to the absorption of wood samples after modification with polymers. Antibacterial tests revealed that wood-QPDMAEMA-Br, as well as wood-PMMA-b-QPDMAEMA-Br, exhibited higher antibacterial activity against Gram-positive bacteria (Staphylococcus aureus) in comparison with Gram-negative bacteria (Escherichia coli). The paper presents an economic concept with ecological aspects of improving wood properties, which gives great opportunities to use the proposed approach in the production of functional hybrid materials for industry and high quality sports equipment, and in furniture production.

2.
Molecules ; 26(7)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805508

RESUMEN

A series of troxerutin-based macromolecules with ten poly(acrylic acid) (PAA) or poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) homopolymer side chains were synthesized by a supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP) approach. The prepared precisely-defined structures with low dispersity (Mw/Mn < 1.09 for PAA-based, and Mw/Mn < 1.71 for PDMAEMA-based macromolecules) exhibited pH-responsive behavior depending on the length of the polymer grafts. The properties of the received polyelectrolytes were investigated by dynamic light scattering (DLS) measurement to determine the hydrodynamic diameter and zeta potential upon pH changes. Additionally, PDMAEMA-based polymers showed thermoresponsive properties and exhibited phase transfer at a lower critical solution temperature (LCST). Thanks to polyelectrolyte characteristics, the prepared polymers were investigated as smart materials for controlled release of quercetin. The influence of the length of the polymer grafts for the quercetin release profile was examined by UV-VIS spectroscopy. The results suggest the strong correlation between the length of the polymer chains and the efficiency of active substance release, thus, the adjustment of the composition of the macromolecules characterized by branched architecture can precisely control the properties of smart delivery systems.


Asunto(s)
Resinas Acrílicas/química , Preparaciones de Acción Retardada/química , Portadores de Fármacos/química , Liberación de Fármacos , Metacrilatos/química , Nylons/química , Polimerizacion , Quercetina/química , Temperatura
3.
Materials (Basel) ; 13(17)2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32878162

RESUMEN

This paper presents the modification of the antibiotic rifampicin by an anionic polyelectrolyte using a simplified electrochemically mediated atom transfer radical polymerization (seATRP) technique to receive stimuli-responsive polymer materials. Initially, a supramolecular ATRP initiator was prepared by an esterification reaction of rifampicin hydroxyl groups with α-bromoisobutyryl bromide (BriBBr). The structure of the initiator was successfully proved by nuclear magnetic resonance (1H and 13C NMR), Fourier-transform infrared (FT-IR) and ultraviolet-visible (UV-vis) spectroscopy. The prepared rifampicin-based macroinitiator was electrochemically investigated among various ATRP catalytic complexes, by a series of cyclic voltammetry (CV) measurements, determining the rate constants of electrochemical catalytic (EC') process. Macromolecules with rifampicin core and hydrophobic poly (n-butyl acrylate) (PnBA) and poly(tert-butyl acrylate) (PtBA) side chains were synthesized in a controlled manner, receiving polymers with narrow molecular weight distribution (Mw/Mn = 1.29 and 1.58, respectively). "Smart" polymer materials sensitive to pH changes were provided by transformation of tBA into acrylic acid (AA) moieties in a facile route by acidic hydrolysis. The pH-dependent behavior of prepared macromolecules was investigated by dynamic light scattering (DLS) determining a hydrodynamic radius of polymers upon pH changes, followed by a control release of quercetin as a model active substance upon pH changes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...