Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 88(22): e0165422, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36342150

RESUMEN

Ocean acidification upwelling events and the resulting lowered aragonite saturation state of seawater have been linked to high mortality of marine bivalve larvae in hatcheries. Major oyster seed producers along North America's west coast have mitigated impacts via seawater pH buffering (e.g., addition of soda ash). However, little consideration has been given to whether such practice may impact the larval microbiome, with potential carry-over effects on immune competency and disease susceptibility in later-life stages. To investigate possible impacts, Pacific oysters (Crassostrea gigas) were reared under soda ash pH buffered or ambient pH seawater conditions for the first 24 h of development. Both treatment groups were then reared under ambient pH conditions for the remainder of the developmental period. Larval microbiome, immune status (via gene expression), growth, and survival were assessed throughout the developmental period. Juveniles and adults arising from the larval run were then subjected to laboratory-based disease challenges to investigate carry-over effects. Larvae reared under buffered conditions showed an altered microbiome, which was still evident in juvenile animals. Moreover, reduced survival was observed in both juveniles and adults of the buffered group under a simulated marine heatwave and Vibrio exposure compared with those reared under ambient conditions. Results suggest that soda ash pH buffering during early development may compromise later-life stages under stressor conditions, and illustrate the importance of a long-view approach with regard to hatchery husbandry practices and climate change mitigation. IMPORTANCE Shellfish industries are threatened worldwide by recurrent summer mortality events. Such incidences are often associated with Vibrio disease outbreaks, and thus, it is critical that animals are able to mount sufficient immune responses. The oyster immune system is linked to the microbiome which is laid down during early developmental stages. Consequently, shellfish hatcheries play a key role with regard to shaping the immune competency of later-life stages. This study represents the first in-depth examination of whether the adoption of seawater pH buffering practice by hatcheries for mitigation of ocean acidification may alter the larval microbiome, and thus, have repercussions for adult susceptibility to summer mortality events. Findings demonstrate that even minimal buffering results in a changed microbiome which is paralleled by increased mortality of later-life stages under Vibrio and temperature stressors, highlighting the importance of the hatchery environment with regard to shaping resilience to summer mortality events.


Asunto(s)
Crassostrea , Microbiota , Vibrio , Animales , Agua de Mar , Larva , Concentración de Iones de Hidrógeno , Susceptibilidad a Enfermedades , Dióxido de Carbono
2.
Sci Rep ; 9(1): 952, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30700813

RESUMEN

The pre-conditioning of adult marine invertebrates to altered conditions, such as low pH, can significantly impact offspring outcomes, a process which is often referred to as transgenerational plasticity (TGP). This study describes for the first time, the gene expression profiles associated with TGP in the green sea urchin Psammechinus miliaris and evaluates the transcriptional contribution to larval resilience. RNA-Seq was used to determine how the expression profiles of larvae spawned into low pH from pre-acclimated adults differed to those of larvae produced from adults cultured under ambient pH. The main findings demonstrated that adult conditioning to low pH critically pre-loads the embryonic transcriptional pool with antioxidants to prepare the larvae for the "new" conditions. In addition, the classic cellular stress response, measured via the production of heat shock proteins (the heat shock response (HSR)), was separately evaluated. None of the early stage larvae either spawned in low pH (produced from both ambient and pre-acclimated adults) or subjected to a separate heat shock experiment were able to activate the full HSR as measured in adults, but the capacity to mount an HSR increased as development proceeded. This compromised ability clearly contributes to the vulnerability of early stage larvae to acute environmental challenge.


Asunto(s)
Adaptación Fisiológica/genética , Erizos de Mar/genética , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , Concentración de Iones de Hidrógeno , Larva/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Agua de Mar , Transcriptoma/genética
3.
PLoS One ; 9(6): e99712, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24927423

RESUMEN

Increases in atmospheric carbon dioxide are leading to physical changes in marine environments including parallel decreases in ocean pH and increases in seawater temperature. This study examined the impacts of a six month exposure to combined decreased pH and increased temperature on the immune response and disease status in the blue mussel, Mytilus edulis L. Results provide the first confirmation that exposure to future acidification and warming conditions via aquarium-based simulation may have parallel implications for bivalve health. Collectively, the data suggests that temperature more than pH may be the key driver affecting immune response in M. edulis. Data also suggests that both increases in temperature and/or lowered pH conditions may lead to changes in parasite abundance and diversity, pathological conditions, and bacterial incidence in M. edulis. These results have implications for future management of shellfish under a predicted climate change scenario and future sustainability of shellfisheries. Examination of the combined effects of two stressors over an extended exposure period provides key preliminary data and thus, this work represents a unique and vital contribution to current research efforts towards a collective understanding of expected near-future impacts of climate change on marine environments.


Asunto(s)
Cambio Climático , Mytilus edulis/inmunología , Mytilus edulis/fisiología , Animales , Concentración de Iones de Hidrógeno , Temperatura
4.
PLoS One ; 9(1): e86764, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24489785

RESUMEN

Ocean surface pH levels are predicted to fall by 0.3-0.4 pH units by the end of the century and are likely to coincide with an increase in sea surface temperature of 2-4 °C. The combined effect of ocean acidification and warming on the functional properties of bivalve shells is largely unknown and of growing concern as the shell provides protection from mechanical and environmental challenges. We examined the effects of near-future pH (ambient pH -0.4 pH units) and warming (ambient temperature +4 °C) on the shells of the commercially important bivalve, Mytilus edulis when fed for a limited period (4-6 h day(-1)). After six months exposure, warming, but not acidification, significantly reduced shell strength determined as reductions in the maximum load endured by the shells. However, acidification resulted in a reduction in shell flex before failure. Reductions in shell strength with warming could not be explained by alterations in morphology, or shell composition but were accompanied by reductions in shell surface area, and by a fall in whole-body condition index. It appears that warming has an indirect effect on shell strength by re-allocating energy from shell formation to support temperature-related increases in maintenance costs, especially as food supply was limited and the mussels were probably relying on internal energy reserves. The maintenance of shell strength despite seawater acidification suggests that biomineralisation processes are unaffected by the associated changes in CaCO3 saturation levels. We conclude that under near-future climate change conditions, ocean warming will pose a greater risk to shell integrity in M. edulis than ocean acidification when food availability is limited.


Asunto(s)
Ácidos/química , Exoesqueleto/fisiología , Cambio Climático , Alimentos , Moluscos/fisiología , Océanos y Mares , Mariscos , Análisis de Varianza , Exoesqueleto/anatomía & histología , Animales , Fenómenos Biomecánicos , Carbonatos/química , Agua de Mar , Temperatura , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA