Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurophysiol ; 129(3): 591-608, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36651913

RESUMEN

Detection of sounds is a fundamental function of the auditory system. Although studies of auditory cortex have gained substantial insight into detection performance using behaving animals, previous subcortical studies have mostly taken place under anesthesia, in passively listening animals, or have not measured performance at threshold. These limitations preclude direct comparisons between neuronal responses and behavior. To address this, we simultaneously measured auditory detection performance and single-unit activity in the inferior colliculus (IC) and cochlear nucleus (CN) in macaques. The spontaneous activity and response variability of CN neurons were higher than those observed for IC neurons. Signal detection theoretic methods revealed that the magnitude of responses of IC neurons provided more reliable estimates of psychometric threshold and slope compared with the responses of single CN neurons. However, pooling small populations of CN neurons provided reliable estimates of psychometric threshold and slope, suggesting sufficient information in CN population activity. Trial-by-trial correlations between spike count and behavioral response emerged 50-75 ms after sound onset for most IC neurons, but for few neurons in the CN. These results highlight hierarchical differences between neurometric-psychometric correlations in CN and IC and have important implications for how subcortical information could be decoded.NEW & NOTEWORTHY The cerebral cortex is widely recognized to play a role in sensory processing and decision-making. Accounts of the neural basis of auditory perception and its dysfunction are based on this idea. However, significantly less attention has been paid to midbrain and brainstem structures in this regard. Here, we find that subcortical auditory neurons represent stimulus information sufficient for detection and predict behavioral choice on a trial-by-trial basis.


Asunto(s)
Corteza Auditiva , Núcleo Coclear , Colículos Inferiores , Animales , Colículos Inferiores/fisiología , Percepción Auditiva/fisiología , Corteza Auditiva/fisiología , Núcleo Coclear/fisiología , Neuronas/fisiología , Estimulación Acústica , Vías Auditivas/fisiología
2.
Lab Anim (NY) ; 51(8): 219-226, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35896636

RESUMEN

Acoustic noise and other environmental variables represent potential confounds for animal research. Of relevance to auditory research, sustained high levels of ambient noise may modify hearing sensitivity and decrease well-being among laboratory animals. The present study was conducted to assess environmental conditions in an animal facility that houses nonhuman primates used for auditory research at the Vanderbilt University Medical Center. Sound levels, vibration, temperature, humidity and luminance were recorded using an environmental monitoring device placed inside of an empty cage in a macaque housing room. Recordings lasted 1 week each, at three different locations within the room. Vibration, temperature, humidity and luminance all varied within recommended levels for nonhuman primates, with one exception of low luminance levels in the bottom cage location. Sound levels at each cage location were characterized by a low baseline of 58-62 dB sound pressure level, with transient peaks up to 109 dB sound pressure level. Sound levels differed significantly across locations, but only by about 1.5 dB. The transient peaks beyond recommended sound levels reflected a very low noise dose, but exceeded startle-inducing levels, which could elicit stress responses. Based on these findings, ambient noise levels in the housing rooms in this primate facility are within acceptable levels and unlikely to contribute to hearing deficits in the nonhuman primates. Our results establish normative values for environmental conditions in a primate facility, can be used to inform best practices for nonhuman primate research and care, and form a baseline for future studies of aging and chronic noise exposure.


Asunto(s)
Animales de Laboratorio , Ruido , Animales , Animales de Laboratorio/fisiología , Audición/fisiología , Vivienda para Animales , Humanos , Ruido/efectos adversos , Vibración
3.
Comp Med ; 72(2): 104-112, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35346415

RESUMEN

Otitis externa (OE) is a condition that involves inflammation of the external ear canal. OE is a commonly reported condition in humans and some veterinary species (for example, dogs, cats), but has not been reported in the literature in macaques. Here, we present a case series of acute and chronic OE likely precipitated by abrasion of the ear canal with a tympanic membrane electrode in 7 adult male rhesus macaques (Macaca mulatta). All animals displayed purulent, mucinous discharge from 1 or both ears with 3 macaques also displaying signs of an upper respiratory tract (URT) infection during the same period. A variety of diagnostic and treatment options were pursued including consultation with an otolaryngologist necessitated by the differences in response to treatment in macaques as compared with other common veterinary species. Due to the nature of the studies in which these macaques were enrolled, standard audiological testing was performed before and after OE, including tympanometry, auditory brainstem responses (ABRs), and distortion product otoacoustic emissions (DPOAEs). After completion of study procedures, relevant tissues were collected for necropsy and histopathology. Impaired hearing was found in all macaques even after apparent resolution of OE signs. Necropsy findings included abnormalities in the tympanic membrane, ossicular chain, and middle ear cavity, suggesting that the hearing impairment was at least partly conductive in nature. We concluded that OE likely resulted from mechanical disruption of the epithelial lining of the ear canal by the ABR electrode, thereby allowing the development of opportunistic infections. OE, while uncommon in macaques, can affect them and should be included as a differential diagnosis of any macaque presenting with otic discharge and/or auricular discomfort.


Asunto(s)
Macaca mulatta , Otitis Externa , Animales , Conducto Auditivo Externo , Electrodos/efectos adversos , Masculino , Otitis Externa/epidemiología , Otitis Externa/etiología , Otitis Externa/veterinaria , Membrana Timpánica
4.
eNeuro ; 8(6)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34872939

RESUMEN

The binaural interaction component (BIC) is a sound-evoked electrophysiological signature of binaural processing in the auditory brainstem that has received attention as a potential biomarker for spatial hearing deficits. Yet the number of trials necessary to evoke the BIC, or its measurability, seems to vary across species: while it is easily measured in small rodents, it has proven to be highly variable and less reliably measured in humans. This has hindered its potential use as a diagnostic tool. Further measurements of the BIC across a wide range of species could help us better understand its origin and the possible reasons for the variation in its measurability. Statistical analysis on the function relating BIC DN1 amplitude and the interaural time difference has been performed in only a few small rodent species, thus it remains to be shown how the results apply to more taxonomically diverse mammals, and those with larger heads. To fill this gap, we measured BICs in rhesus macaque. We show the overall behavior of the BIC is the same as in smaller rodents, suggesting that the brainstem circuit responsible for the BIC is conserved across a wider range of mammals. We suggest that differences in measurability are likely because of differences in head size.


Asunto(s)
Tronco Encefálico , Potenciales Evocados Auditivos del Tronco Encefálico , Estimulación Acústica , Animales , Macaca mulatta , Sonido
5.
Hear Res ; 401: 108156, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33373804

RESUMEN

Noise-induced hearing loss (NIHL) is known to have significant consequences for temporal, spectral, and spatial resolution. However, much remains to be discovered about their underlying pathophysiology. This report extends the recent development of a nonhuman primate model of NIHL to explore its consequences for hearing in noisy environments, and its correlations with the underlying cochlear pathology. Ten macaques (seven with normal-hearing, three with NIHL) were used in studies of masked tone detection in which the temporal or spatial properties of the masker were varied to assess metrics of temporal and spatial processing. Normal-hearing (NH) macaques showed lower tone detection thresholds for sinusoidally amplitude modulated (SAM) broadband noise maskers relative to unmodulated maskers (modulation masking release, MMR). Tone detection thresholds were lowest at low noise modulation frequencies, and increased as modulation frequency increased, until they matched threshold in unmodulated noise. NH macaques also showed lower tone detection thresholds for spatially separated tone and noise relative to co-localized tone and noise (spatial release from masking, SRM). Noise exposure caused permanent threshold shifts that were verified behaviorally and audiologically. In hearing-impaired (HI) macaques, MMR was reduced at tone frequencies above that of the noise exposure. HI macaques also showed degraded SRM, with no SRM observed across all tested tone frequencies. Deficits in MMR correlated with audiometric threshold changes, outer hair cell loss, and synapse loss, while the differences in SRM did not correlate with audiometric changes, or any measure of cochlear pathophysiology. This difference in anatomical-behavioral correlations suggests that while many behavioral deficits may arise from cochlear pathology, only some are predictable from the frequency place of damage in the cochlea.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Procesamiento Espacial , Animales , Umbral Auditivo , Cóclea , Pérdida Auditiva Provocada por Ruido/etiología , Macaca , Ruido/efectos adversos , Enmascaramiento Perceptual
6.
Hear Res ; 398: 108082, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33045479

RESUMEN

Exposure to loud noise causes damage to the inner ear, including but not limited to outer and inner hair cells (OHCs and IHCs) and IHC ribbon synapses. This cochlear damage impairs auditory processing and increases audiometric thresholds (noise-induced hearing loss, NIHL). However, the exact relationship between the perceptual consequences of NIHL and its underlying cochlear pathology are poorly understood. This study used a nonhuman primate model of NIHL to relate changes in frequency selectivity and audiometric thresholds to indices of cochlear histopathology. Three macaques (one Macaca mulatta and two Macaca radiata) were trained to detect tones in quiet and in noises that were spectrally notched around the tone frequency. Audiograms were derived from tone thresholds in quiet; perceptual auditory filters were derived from tone thresholds in notched-noise maskers using the rounded-exponential fit. Data were obtained before and after a four-hour exposure to a 50-Hz noise centered at 2 kHz at 141 or 146 dB SPL. Noise exposure caused permanent audiometric threshold shifts and broadening of auditory filters at and above 2 kHz, with greater changes observed for the 146-dB-exposed monkeys. The normalized bandwidth of the perceptual auditory filters was strongly correlated with audiometric threshold at each tone frequency. While changes in audiometric threshold and perceptual auditory filter widths were primarily determined by the extent of OHC survival, additional variability was explained by including interactions among OHC, IHC, and ribbon synapse survival. This is the first study to provide within-subject comparisons of auditory filter bandwidths in an animal model of NIHL and correlate these NIHL-related perceptual changes with cochlear histopathology. These results expand the foundations for ongoing investigations of the neural correlates of NIHL-related perceptual changes.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Animales , Umbral Auditivo , Cóclea , Pérdida Auditiva Provocada por Ruido/etiología , Macaca
7.
Brain Imaging Behav ; 12(1): 87-95, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28108946

RESUMEN

Adjuvant chemotherapy has been used for decades to treat cancer, and it is well known that disruptions in cognitive function and memory are common chemotherapeutic adverse effects. However, studies using neuropsychological metrics have also reported group differences in cognitive function and memory before or without chemotherapy, suggesting that complex factors obscure the true etiology of chemotherapy-induced cognitive dysfunction (CICD) in humans. Therefore, to better understand possible mechanisms of CICD, we explored the effects of CICD in rats through cognition testing using novel object recognition (NOR) and contextual fear conditioning (CFC), and through metabolic neuroimaging via [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET). Cancer-naïve, female Sprague-Dawley rats were administered either saline (1 mL/kg) or doxorubicin (DOX) (1 mg/kg in a volume of 1 mL/kg) weekly for five weeks (total dose = 5 mg/kg), and underwent cognition testing and PET imaging immediately following the treatment regime and 30 days post treatment. We did not observe significant differences with CFC testing post-treatment for either group. However, the chemotherapy group exhibited significantly decreased performance in the NOR test and decreased 18F-FDG uptake only in the prefrontal cortex 30 days post-treatment. These results suggest that long-term impairment within the prefrontal cortex is a plausible mechanism of CICD in this study, suggesting DOX-induced toxicity in the prefrontal cortex at the dose used.


Asunto(s)
Antineoplásicos/toxicidad , Encéfalo/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/diagnóstico por imagen , Doxorrubicina/toxicidad , Animales , Mapeo Encefálico , Disfunción Cognitiva/psicología , Condicionamiento Psicológico/efectos de los fármacos , Modelos Animales de Enfermedad , Miedo/efectos de los fármacos , Femenino , Fluorodesoxiglucosa F18 , Imagen por Resonancia Magnética , Neuroimagen , Tomografía de Emisión de Positrones , Radiofármacos , Ratas Sprague-Dawley , Reconocimiento en Psicología/efectos de los fármacos , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...