Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem Toxicol ; 182: 114118, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863384

RESUMEN

The popularity of quinoa seeds has increased in the last decade due to their high nutritional value and natural gluten-free composition. Consumption of new proteins may pose a risk of introducing new allergies. In the present study the immunogenicity and sensitising capacity of quinoa proteins were assessed in a dose-response experiment in Brown Norway rats in comparison to proteins from spinach and peanut. Cross-reactivity between quinoa proteins and known allergens was evaluated by in silico analyses followed by analyses with 11 selected protein extracts and their anti-sera by means of ELISAs and immunoblotting. Further, an in vitro simulated gastro-duodenal digestion was performed. Quinoa proteins were found to have an inherent medium to high immunogenicity and sensitising capacity, being able to induce specific IgG1 and IgE levels higher than spinach but lower than peanut and elicit reactions of clinical relevance similar to peanut. Quinoa proteins were generally shown to resist digestion and retain capacity to bind quinoa-specific antibodies. Quinoa proteins were shown to be cross-reactive with peanut and tree nut allergens as high sequence homology and antibody cross-binding were demonstrated. Present study suggests that quinoa pose a medium to high level of allergenicity that should be further investigated in human studies.


Asunto(s)
Chenopodium quinoa , Fabaceae , Hipersensibilidad al Cacahuete , Ratas , Animales , Humanos , Alérgenos , Inmunoglobulina E , Nueces , Arachis , Proteínas de Plantas
2.
Front Immunol ; 14: 1121497, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911669

RESUMEN

Introduction: Allergen-specific immunotherapy (IT) is emerging as a viable option for treatment of peanut allergy. Yet, prophylactic IT remains unexplored despite early introduction of peanut in infancy was shown to prevent allergy. There is a need to understand how allergens interact with the immune system depending on the route of administration, and how different dosages of allergen may protect from sensitisation and a clinical active allergy. Here we compared peanut allergen delivery via the oral, sublingual (SL), intragastric (IG) and subcutaneous (SC) routes for the prevention of peanut allergy in Brown Norway (BN) rats. Methods: BN rats were administered PBS or three different doses of peanut protein extract (PPE) via either oral IT (OIT), SLIT, IGIT or SCIT followed by intraperitoneal (IP) injections of PPE to assess the protection from peanut sensitisation. The development of IgE and IgG1 responses to PPE and the major peanut allergens were evaluated by ELISAs. The clinical response to PPE was assessed by an ear swelling test (EST) and proliferation was assessed by stimulating splenocytes with PPE. Results: Low and medium dose OIT (1 and 10 mg) and all doses of SCIT (1, 10, 100 µg) induced sensitisation to PPE, whereas high dose OIT (100 mg), SLIT (10, 100 or 1000 µg) or IGIT (1, 10 and 100 mg) did not. High dose OIT and SLIT as well as high and medium dose IGIT prevented sensitisation from the following IP injections of PPE and suppressed PPE-specific IgE levels in a dose-dependent manner. Hence, administration of peanut protein via different routes confers different risks for sensitisation and protection from peanut allergy development. Overall, the IgE levels toward the individual major peanut allergens followed the PPE-specific IgE levels. Discussion: Collectively, this study showed that the preventive effect of allergen-specific IT is determined by the interplay between the specific site of PPE delivery for presentation to the immune system, and the allergen quantity, and that targeting and modulating tolerance mechanisms at specific mucosal sites may be a prophylactic strategy for prevention of peanut allergy.


Asunto(s)
Hipersensibilidad al Cacahuete , Ratas , Animales , Ratas Endogámicas BN , Administración Oral , Desensibilización Inmunológica , Alérgenos , Inmunoglobulina E , Arachis
3.
Food Funct ; 4(12): 1819-26, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24158460

RESUMEN

We hypothesize that the rate of release of lipids from salmon muscle during in vitro digestion is altered by additional meal components. In vitro digestion of salmon was performed using a mixture of porcine gastrointestinal enzymes and bile salts. Broccoli and barley were also added to the digestion simulating a meal. The extent of lipolysis was determined by measuring the release of fatty acids (FAs) during sampling at the simulated gastric phase endpoint (60 minutes) and 20, 40, 60, 80, 110 and 140 minutes simulated small intestinal phase, using solid phase extraction and GC-FID. Adding barley resulted in a lower overall release of FA from salmon, whereas broccoli caused an initial delay followed by increased release from 80-140 min when lipid digestion of salmon alone plateaued. The impact of broccoli and barley on the release of peptides and digesta viscosity were also measured. The effect of different components in the meal shown by this in vitro study suggests that it would be possible to make dietary changes affecting the lipolysis, further triggering specific responses in the gastrointestinal tract. However, these observations need to be validated in vivo, and the mechanisms need to be further examined.


Asunto(s)
Ácidos Grasos/metabolismo , Tracto Gastrointestinal/metabolismo , Músculo Esquelético/metabolismo , Alimentos Marinos/análisis , Verduras/metabolismo , Animales , Dieta , Digestión , Ácidos Grasos/química , Tracto Gastrointestinal/química , Tracto Gastrointestinal/enzimología , Humanos , Cinética , Modelos Biológicos , Músculo Esquelético/química , Salmón , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...