Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Protoc ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671208

RESUMEN

In temperate and subtropical regions, ancient proteins are reported to survive up to about 2 million years, far beyond the known limits of ancient DNA preservation in the same areas. Accordingly, their amino acid sequences currently represent the only source of genetic information available to pursue phylogenetic inference involving species that went extinct too long ago to be amenable for ancient DNA analysis. Here we present a complete workflow, including sample preparation, mass spectrometric data acquisition and computational analysis, to recover and interpret million-year-old dental enamel protein sequences. During sample preparation, the proteolytic digestion step, usually an integral part of conventional bottom-up proteomics, is omitted to increase the recovery of the randomly degraded peptides spontaneously generated by extensive diagenetic hydrolysis of ancient proteins over geological time. Similarly, we describe other solutions we have adopted to (1) authenticate the endogenous origin of the protein traces we identify, (2) detect and validate amino acid variation in the ancient protein sequences and (3) attempt phylogenetic inference. Sample preparation and data acquisition can be completed in 3-4 working days, while subsequent data analysis usually takes 2-5 days. The workflow described requires basic expertise in ancient biomolecules analysis, mass spectrometry-based proteomics and molecular phylogeny. Finally, we describe the limits of this approach and its potential for the reconstruction of evolutionary relationships in paleontology and paleoanthropology.

2.
PLoS One ; 18(12): e0294129, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38091270

RESUMEN

Leather was one of the most important materials of nomadic Scythians, used for clothing, shoes, and quivers, amongst other objects. However, our knowledge regarding the specific animal species used in Scythian leather production remains limited. In this first systematic study, we used palaeoproteomics methods to analyse the species in 45 samples of leather and two fur objects recovered from 18 burials excavated at 14 different Scythian sites in southern Ukraine. Our results demonstrate that Scythians primarily used domesticated species such as sheep, goat, cattle, and horse for the production of leather, while the furs were made of wild animals such as fox, squirrel and feline species. The surprise discovery is the presence of two human skin samples, which for the first time provide direct evidence of the ancient Greek historian Herodotus' claim that Scythians used the skin of their dead enemies to manufacture leather trophy items, such as quiver covers. We argue that leather manufacture is not incompatible with a nomadic lifestyle and that Scythians possessed sophisticated leather production technologies that ensured stable supply of this essential material.


Asunto(s)
Animales Salvajes , Piel , Humanos , Animales , Gatos , Bovinos , Caballos , Ovinos , Ucrania , Zapatos , Cabras
3.
PLoS One ; 18(12): e0291308, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38100471

RESUMEN

Pleistocene Pongo teeth show substantial variation in size and morphology, fueling taxonomic debates about the paleodiversity of the genus. We investigated prominent features of the enamel-dentine-junction junction (EDJ)-phylogenetically informative internal structures-of 71 fossil Pongo lower molars from various sites by applying geometric morphometrics and conducted paleoproteomic analyses from enamel proteins to attempt to identify extinct orangutan species. Forty-three orangutan lower molars representing Pongo pygmaeus and Pongo abelii were included for comparison. The shape of the EDJ was analyzed by placing five landmarks on the tip of the main dentine horns, and 142 semilandmarks along the marginal ridges connecting the dentine horns. Paleoproteomic analyses were conducted on 15 teeth of Late Pleistocene Pongo using high-resolution tandem mass spectrometry. The geometric morphometric results show variations in EDJ shape regarding aspects of the height and position of the dentine horns and connecting ridges. Despite the issue of molar position and sample size, modern molars are distinguished from fossil counterparts by their elongated tooth outline and narrowly positioned dentine horns. Proteomic results show that neither a distinction of P. pygmaeus and P. abelii, nor a consistent allocation of fossil specimens to extant species is feasible. Based on the EDJ shape, the (late) Middle to Late Pleistocene Pongo samples from Vietnam share the same morphospace, supporting the previous allocation to P. devosi, although substantial overlap with Chinese fossils could also indicate close affinities with P. weidenreichi. The hypothesis that both species represent one chronospecies cannot be ruled out. Two fossil specimens, one from Tam Hay Marklot (Laos, Late Pleistocene), and another from Sangiran (Java, Early to Middle Pleistocene), along with some specimens within the Punung sample (Java), exhibit affinities with Pongo abelii. The Punung fossils might represent a mix of early Late Pleistocene and later specimens (terminal Pleistocene to Holocene) related to modern Pongo. The taxonomy and phylogeny of the complete Punung sample needs to be further investigated.


Asunto(s)
Hominidae , Pongo abelii , Diente , Animales , Pongo/anatomía & histología , Hominidae/anatomía & histología , Proteómica , Diente Molar/anatomía & histología , Pongo pygmaeus , Fósiles
4.
Ecol Evol ; 13(10): e10625, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37877101

RESUMEN

Marine historical ecology provides a means to establish baselines to inform current fisheries management. Groupers (Epinephelidae) are key species for fisheries in the Mediterranean, which have been heavily overfished. Species abundance and distribution prior to the 20th century in the Mediterranean remains poorly known. To reconstruct the past biogeography of Mediterranean groupers, we investigated whether Zooarchaeology by Mass Spectrometry (ZooMS) can be used for identifying intra-genus grouper bones to species level. We discovered 22 novel, species-specific ZooMS biomarkers for groupers. Applying these biomarkers to Kinet Höyük, a Mediterranean archaeological site, demonstrated 4000 years of regional Epinephelus aeneus dominance and resiliency through millennia of fishing pressures, habitat degradation and climatic changes. Combining ZooMS identifications with catch size reconstructions revealed the Epinephelus aeneus capacity for growing 30 cm larger than hitherto documented, revising the maximum Total Length from 120 to 150 cm. Our results provide ecological baselines for a key Mediterranean fishery which could be leveraged to define and assess conservation targets.

5.
PLoS One ; 18(8): e0288075, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37531349

RESUMEN

In 2018, a well-constructed cist-type grave was discovered at Ba`ja, a Neolithic village (7,400-6,800 BCE) in Southern Jordan. Underneath multiple grave layers, an 8-year-old child was buried in a fetal position. Over 2,500 beads were found on the chest and neck, along with a double perforated stone pendant and a delicately engraved mother-of-pearl ring discovered among the concentration of beads. The first was found behind the neck, and the second on the chest. The meticulous documentation of the bead distribution indicated that the assemblage was a composite ornament that had gradually collapsed, partly due to the burying position. Our aim was to challenge time degradation and to reimagine the initial composition in order to best explore the significance of this symbolic category of material culture, not as mere group of beads, but as an ornamental creation with further aesthetic, artisanal and socioeconomic implications. The reconstruction results exceeded our expectations as it revealed an imposing multi-row necklace of complex structure and attractive design. Through multiple lines of evidence, we suggest that the necklace was created at Ba`ja, although significant parts of beads were made from exotic shells and stones, including fossil amber, an unprecedented material never attested before for this period. The retrieval of such an ornament from life and its attribution to a young dead child highlights the significant social status of this individual. Beyond the symbolic functions related to identity, the necklace is believed to have played a key role in performing the inhumation rituals, understood as a public event gathering families, relatives, and people from other villages. In this sense, the necklace is not seen as belonging completely to the realm of death but rather to the world of the living, materializing a collective memory and shared moments of emotions and social cohesion.


Asunto(s)
Conducta Compulsiva , Estatus Social , Humanos , Niño , Embarazo , Femenino , Jordania , Percepción Social , Fósiles
6.
Sci Rep ; 13(1): 11978, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488251

RESUMEN

The Neolithic burial of Grotta di Pietra Sant'Angelo (CS) represents a unique archaeological finding for the prehistory of Southern Italy. The unusual placement of the inhumation at a rather high altitude and far from inhabited areas, the lack of funerary equipment and the prone deposition of the body find limited similarities in coeval Italian sites. These elements have prompted wider questions on mortuary customs during the prehistory of Southern Italy. This atypical case requires an interdisciplinary approach aimed to build an integrated bioarchaeological profile of the individual. The paleopathological investigation of the skeletal remains revealed the presence of numerous markers that could be associated with craft activities, suggesting possible interpretations of the individual's lifestyle. CT analyses, carried out on the maxillary bones, showed the presence of a peculiar type of dental wear, but also a good density of the bone matrix. Biomolecular and micromorphological analyses of dental calculus highlight the presence of a rich Neolithic-like oral microbiome, the composition of which is consistent with the presence pathologies. Finally, paleogenomic data obtained from the individual were compared with ancient and modern Mediterranean populations, including unpublished high-resolution genome-wide data for 20 modern inhabitants of the nearby village of San Lorenzo Bellizzi, which provided interesting insights into the biodemographic landscape of the Neolithic in Southern Italy.


Asunto(s)
Arqueología , Entierro , Humanos , Restos Mortales , Matriz Ósea , Italia
7.
Proc Natl Acad Sci U S A ; 120(30): e2220747120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459551

RESUMEN

"Protect and restore ecosystems and biodiversity" is the second official aim of the current UN Ocean Decade (2021 to 2030) calling for the identification and protection of critical marine habitats. However, data to inform policy are often lacking altogether or confined to recent times, preventing the establishment of long-term baselines. The unique insights gained from combining bioarchaeology (palaeoproteomics, stable isotope analysis) with contemporary data (from satellite tracking) identified habitats which sea turtles have been using in the Eastern Mediterranean over five millennia. Specifically, our analysis of archaeological green turtle (Chelonia mydas) bones revealed that they likely foraged on the same North African seagrass meadows as their modern-day counterparts. Here, millennia-long foraging habitat fidelity has been directly demonstrated, highlighting the significance (and long-term dividends) of protecting these critical coastal habitats that are especially vulnerable to global warming. We highlight the potential for historical ecology to inform policy in safeguarding critical marine habitats.


Asunto(s)
Alismatales , Conducta Animal , Ecosistema , Especies en Peligro de Extinción , Tortugas , Animales , Biodiversidad , Ecología , África del Norte , Mar Mediterráneo , Región Mediterránea
8.
Sci Adv ; 9(21): eade7686, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37224244

RESUMEN

The application of mass spectrometry-based proteomics to artworks provides accurate and detailed characterization of protein-based materials used in their production. This is highly valuable to plan conservation strategies and reconstruct the artwork's history. In this work, the proteomic analysis of canvas paintings from the Danish Golden Age led to the confident identification of cereal and yeast proteins in the ground layer. This proteomic profile points to a (by-)product of beer brewing, in agreement with local artists' manuals. The use of this unconventional binder can be connected to the workshops within the Royal Danish Academy of Fine Arts. The mass spectrometric dataset generated from proteomics was also processed with a metabolomics workflow. The spectral matches observed supported the proteomic conclusions, and, in at least one sample, suggested the use of drying oils. These results highlight the value of untargeted proteomics in heritage science, correlating unconventional artistic materials with local culture and practices.


Asunto(s)
Pinturas , Cerveza , Proteómica , Grano Comestible , Dinamarca
9.
Nat Commun ; 14(1): 914, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854679

RESUMEN

The systematics of Madagascar's extinct elephant birds remains controversial due to large gaps in the fossil record and poor biomolecular preservation of skeletal specimens. Here, a molecular analysis of 1000-year-old fossil eggshells provides the first description of elephant bird phylogeography and offers insight into the ecology and evolution of these flightless giants. Mitochondrial genomes from across Madagascar reveal genetic variation that is correlated with eggshell morphology, stable isotope composition, and geographic distribution. The elephant bird crown is dated to ca. 30 Mya, when Madagascar is estimated to have become less arid as it moved northward. High levels of between-clade genetic variation support reclassifying Mullerornis into a separate family. Low levels of within-clade genetic variation suggest there were only two elephant bird genera existing in southern Madagascar during the Holocene. However, we find an eggshell collection from Madagascar's far north that represents a unique lineage of Aepyornis. Furthermore, divergence within Aepyornis coincides with the aridification of Madagascar during the early Pleistocene ca. 1.5 Ma, and is consistent with the fragmentation of populations in the highlands driving diversification and the evolution of extreme gigantism over shorts timescales. We advocate for a revision of their taxonomy that integrates palaeogenomic and palaeoecological perspectives.


Asunto(s)
Aves , Cáscara de Huevo , Fósiles , Animales , Aves/clasificación , Extinción Biológica
10.
Elife ; 112022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36533893

RESUMEN

Previously, we showed that authentic peptide sequences could be obtained from 3.8-Ma-old ostrich eggshell (OES) from the site of Laetoli, Tanzania (Demarchi et al., 2016). Here, we show that the same sequences survive in a >6.5 Ma OES recovered from a palaeosteppe setting in northwestern China. The eggshell is thicker than those observed in extant species and consistent with the Liushu Struthio sp. ootaxon. These findings push the preservation of ancient proteins back to the Miocene and highlight their potential for paleontology, paleoecology, and evolutionary biology.


Asunto(s)
Fósiles , Paleontología , Evolución Biológica , Péptidos , Secuencia de Aminoácidos
11.
Commun Biol ; 5(1): 1262, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400919

RESUMEN

Recent improvements in the analysis of ancient biomolecules from human remains and associated dental calculus have provided new insights into the prehistoric diet and genetic diversity of our species. Here we present a multi-omics study, integrating metagenomic and proteomic analyses of dental calculus, and human ancient DNA analysis of the petrous bones of two post-Last Glacial Maximum (LGM) individuals from San Teodoro cave (Italy), to reconstruct their lifestyle and the post-LGM resettlement of Europe. Our analyses show genetic homogeneity in Sicily during the Palaeolithic, representing a hitherto unknown Italian genetic lineage within the previously identified Villabruna cluster. We argue that this lineage took refuge in Italy during the LGM, followed by a subsequent spread to central-western Europe. Analysis of dental calculus showed a diet rich in animal proteins which is also reflected on the oral microbiome composition. Our results demonstrate the power of this approach in the study of prehistoric humans and will enable future research to reach a more holistic understanding of the population dynamics and ecology.


Asunto(s)
Microbiota , Proteómica , Humanos , Animales , Cálculos Dentales , Dieta , Genómica , Microbiota/genética
12.
PLoS One ; 17(7): e0270040, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35895633

RESUMEN

Fur is known from contemporary written sources to have been a key commodity in the Viking Age. Nevertheless, the fur trade has been notoriously difficult to study archaeologically as fur rarely survives in the archaeological record. In Denmark, fur finds are rare and fur in clothing has been limited to a few reports and not recorded systematically. We were therefore given access to fur from six Danish high status graves dated to the Viking Age. The fur was analysed by aDNA and palaeoproteomics methods to identify the species of origin in order to explore the Viking Age fur trade. Endogenous aDNA was not recovered, but fur proteins (keratins) were analysed by MALDI-TOF-MS and LC-MS/MS. We show that Viking Age skin clothing were often composites of several species, showing highly developed manufacturing and material knowledge. For example, fur was produced from wild animals while leather was made of domesticates. Several examples of beaver fur were identified, a species which is not native to Denmark, and therefore indicative of trade. We argue that beaver fur was a luxury commodity, limited to the elite and worn as an easily recognisable indicator of social status.


Asunto(s)
Roedores , Espectrometría de Masas en Tándem , Animales , Entierro , Cromatografía Liquida , Dinamarca
13.
Proc Natl Acad Sci U S A ; 119(43): e2109326119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-35609205

RESUMEN

The realization that ancient biomolecules are preserved in "fossil" samples has revolutionized archaeological science. Protein sequences survive longer than DNA, but their phylogenetic resolution is inferior; therefore, careful assessment of the research questions is required. Here, we show the potential of ancient proteins preserved in Pleistocene eggshell in addressing a longstanding controversy in human and animal evolution: the identity of the extinct bird that laid large eggs which were exploited by Australia's indigenous people. The eggs had been originally attributed to the iconic extinct flightless bird Genyornis newtoni (†Dromornithidae, Galloanseres) and were subsequently dated to before 50 ± 5 ka by Miller et al. [Nat. Commun. 7, 10496 (2016)]. This was taken to represent the likely extinction date for this endemic megafaunal species and thus implied a role of humans in its demise. A contrasting hypothesis, according to which the eggs were laid by a large mound-builder megapode (Megapodiidae, Galliformes), would therefore acquit humans of their responsibility in the extinction of Genyornis. Ancient protein sequences were reconstructed and used to assess the evolutionary proximity of the undetermined eggshell to extant birds, rejecting the megapode hypothesis. Authentic ancient DNA could not be confirmed from these highly degraded samples, but morphometric data also support the attribution of the eggshell to Genyornis. When used in triangulation to address well-defined hypotheses, paleoproteomics is a powerful tool for reconstructing the evolutionary history in ancient samples. In addition to the clarification of phylogenetic placement, these data provide a more nuanced understanding of the modes of interactions between humans and their environment.


Asunto(s)
Aves , Cáscara de Huevo , Animales , Humanos , Filogenia , Aves/genética , ADN/genética , Evolución Biológica , Fósiles , ADN Antiguo
15.
Biochim Biophys Acta Proteins Proteom ; 1869(12): 140718, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34506968

RESUMEN

Mollusc shells represent excellent systems for the preservation and retrieval of genuine biomolecules from archaeological or palaeontological samples. As a consequence, the post-mortem breakdown of intracrystalline mollusc shell proteins has been extensively investigated, particularly with regard to its potential use as a "molecular clock" for geochronological applications. But despite seventy years of ancient protein research, the fundamental aspects of diagenesis-induced changes to protein structures and sequences remain elusive. In this study we investigate the degradation of intracrystalline proteins by performing artificial degradation experiments on the shell of the thorny oyster, Spondylus gaederopus, which is particularly important for archaeological research. We used immunochemistry and tandem mass tag (TMT) quantitative proteomics to simultaneously track patterns of structural loss and of peptide bond hydrolysis. Powdered and bleached shell samples were heated in water at four different temperatures (80, 95, 110, 140 °C) for different time durations. The structural loss of carbohydrate and protein groups was investigated by immunochemical techniques (ELLA and ELISA) and peptide bond hydrolysis was studied by tracking the changes in protein/peptide relative abundances over time using TMT quantitative proteomics. We find that heating does not induce instant organic matrix decay, but first facilitates the uncoiling of cross-linked structures, thus improving matrix detection. We calculated apparent activation energies of structural loss: Ea (carbohydrate groups) = 104.7 kJ/mol, Ea (protein epitopes) = 104.4 kJ/mol, which suggests that secondary matrix structure degradation may proceed simultaneously with protein hydrolysis. While prolonged heating at 110 °C (10 days) results in complete loss of the structural signal, surviving peptide sequences were still observed. Eight hydrolysis-prone peptide bonds were identified in the top scoring shell sequence, the uncharacterised protein LOC117318053 from Pecten maximus. Interestingly, these were not the expected "weak" bonds based on published theoretical stabilities calculated for peptides in solution. This further confirms that intracrystalline protein degradation patterns are complex and that the overall microchemical environment plays an active role in protein stability. Our TMT approach represents a major stepping stone towards developing a model for studying protein diagenesis in biomineralised systems.


Asunto(s)
Exoesqueleto/química , Bivalvos/química , Proteoma/química , Animales , Proteolisis
16.
Proc Biol Sci ; 288(1954): 20210020, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34229485

RESUMEN

The domestic dog has inhabited the anthropogenic niche for at least 15 000 years, but despite their impact on human strategies, the lives of dogs and their interactions with humans have only recently become a subject of interest to archaeologists. In the Arctic, dogs rely exclusively on humans for food during the winter, and while stable isotope analyses have revealed dietary similarities at some sites, deciphering the details of provisioning strategies have been challenging. In this study, we apply zooarchaeology by mass spectrometry (ZooMS) and liquid chromatography tandem mass spectrometry to dog palaeofaeces to investigate protein preservation in this highly degradable material and obtain information about the diet of domestic dogs at the Nunalleq site, Alaska. We identify a suite of digestive and metabolic proteins from the host species, demonstrating the utility of this material as a novel and viable substrate for the recovery of gastrointestinal proteomes. The recovered proteins revealed that the Nunalleq dogs consumed a range of Pacific salmon species (coho, chum, chinook and sockeye) and that the consumed tissues derived from muscle and bone tissues as well as roe and guts. Overall, the study demonstrated the viability of permafrost-preserved palaeofaeces as a unique source of host and dietary proteomes.


Asunto(s)
Hominidae , Proteoma , Alaska , Animales , Regiones Árticas , Dieta/veterinaria , Perros
17.
Sci Rep ; 11(1): 7795, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33833277

RESUMEN

The origins, prevalence and nature of dairying have been long debated by archaeologists. Within the last decade, new advances in high-resolution mass spectrometry have allowed for the direct detection of milk proteins from archaeological remains, including ceramic residues, dental calculus, and preserved dairy products. Proteins recovered from archaeological remains are susceptible to post-excavation and laboratory contamination, a particular concern for ancient dairying studies as milk proteins such as beta-lactoglobulin (BLG) and caseins are potential laboratory contaminants. Here, we examine how site-specific rates of deamidation (i.e., deamidation occurring in specific positions in the protein chain) can be used to elucidate patterns of peptide degradation, and authenticate ancient milk proteins. First, we characterize site-specific deamidation patterns in modern milk products and experimental samples, confirming that deamidation occurs primarily at low half-time sites. We then compare this to previously published palaeoproteomic data from six studies reporting ancient milk peptides. We confirm that site-specific deamidation rates, on average, are more advanced in BLG  recovered from ancient dental calculus and pottery residues. Nevertheless, deamidation rates displayed a high degree of variability, making it challenging to authenticate samples with relatively few milk peptides. We demonstrate that site-specific deamidation is a useful tool for identifying modern contamination but highlight the need for multiple lines of evidence to authenticate ancient protein data.


Asunto(s)
Arqueología/métodos , Proteínas de la Leche/química , Leche/química , Péptidos/química , Animales , Desaminación , Humanos
18.
Sci Rep ; 11(1): 6631, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758223

RESUMEN

We used palaeoproteomics and peptide mass fingerprinting to obtain secure species identifications of key specimens of early domesticated fauna from South Africa, dating to ca. 2000 BP. It can be difficult to distinguish fragmentary remains of early domesticates (sheep) from similar-sized local wild bovids (grey duiker, grey rhebok, springbok-southern Africa lacks wild sheep) based on morphology alone. Our analysis revealed a Zooarchaeology by Mass Spectrometry (ZooMS) marker (m/z 1532) present in wild bovids and we demonstrate through LC-MS/MS that it is capable of discriminating between wild bovids and caprine domesticates. We confirm that the Spoegrivier specimen dated to 2105 ± 65 BP is indeed a sheep. This is the earliest directly dated evidence of domesticated animals in southern Africa. As well as the traditional method of analysing bone fragments, we show the utility of minimally destructive sampling methods such as PVC eraser and polishing films for successful ZooMS identification. We also show that collagen extracted more than 25 years ago for the purpose of radiocarbon dating can yield successful ZooMS identification. Our study demonstrates the importance of developing appropriate regional frameworks of comparison for future research using ZooMS as a method of biomolecular species identification.


Asunto(s)
Animales Domésticos , Arqueología , Proteómica , Ovinos/clasificación , Ovinos/metabolismo , África Austral , Animales , Arqueología/métodos , Huesos , Cromatografía Liquida , Proteómica/métodos , Espectrometría de Masas en Tándem
19.
Mol Ecol Resour ; 21(6): 1808-1819, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33720532

RESUMEN

Mammalian faeces can be collected noninvasively during field research and provide valuable information on the ecology and evolution of the source individuals. Undigested food remains, genome/metagenome, steroid hormones, and stable isotopes obtained from faecal samples provide evidence on diet, host/symbiont genetics, and physiological status of the individuals. However, proteins in mammalian faeces have hardly been studied, which hinders the molecular investigations into the behaviour and physiology of the source individuals. Here, we apply mass spectrometry-based proteomics to faecal samples (n = 10), collected from infant, juvenile, and adult captive Japanese macaques (Macaca fuscata), to describe the proteomes of the source individual, of the food it consumed, and its intestinal microbes. The results show that faecal proteomics is a useful method to: (i) investigate dietary changes along with breastfeeding and weaning, (ii) reveal the taxonomic and histological origin of the food items consumed, and (iii) estimate physiological status inside intestinal tracts. These types of insights are difficult or impossible to obtain through other molecular approaches. Most mammalian species are facing extinction risk and there is an urgent need to obtain knowledge on their ecology and evolution for better conservation strategy. The faecal proteomics framework we present here is easily applicable to wild settings and other mammalian species, and provides direct evidence of their behaviour and physiology.


Asunto(s)
Macaca fuscata , Proteómica , Animales , Dieta/veterinaria , Heces
20.
Philos Trans R Soc Lond B Biol Sci ; 375(1812): 20190584, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33012227

RESUMEN

Mineralized dental plaque (calculus) has proven to be an excellent source of ancient biomolecules. Here we present a Mycobacterium leprae genome (6.6-fold), the causative agent of leprosy, recovered via shotgun sequencing of sixteenth-century human dental calculus from an individual from Trondheim, Norway. When phylogenetically placed, this genome falls in branch 3I among the diversity of other contemporary ancient strains from Northern Europe. Moreover, ancient mycobacterial peptides were retrieved via mass spectrometry-based proteomics, further validating the presence of the pathogen. Mycobacterium leprae can readily be detected in the oral cavity and associated mucosal membranes, which likely contributed to it being incorporated into this individual's dental calculus. This individual showed some possible, but not definitive, evidence of skeletal lesions associated with early-stage leprosy. This study is the first known example of successful multi-omics retrieval of M. leprae from archaeological dental calculus. Furthermore, we offer new insights into dental calculus as an alternative sample source to bones or teeth for detecting and molecularly characterizing M. leprae in individuals from the archaeological record. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.


Asunto(s)
ADN Antiguo/análisis , Cálculos Dentales/historia , Genoma Bacteriano , Lepra/historia , Mycobacterium leprae/genética , Adulto , Arqueología , Cálculos Dentales/microbiología , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Historia del Siglo XVI , Humanos , Lepra/microbiología , Persona de Mediana Edad , Noruega , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...