Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Res Toxicol ; 37(6): 968-980, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38743843

RESUMEN

The widespread use of silver nanoparticles (AgNPs) in various applications and industries has brought to light the need for understanding the complex relationship between the physicochemical properties (shape, size, charge, and surface chemistry) of AgNPs that affect their ability to enter cells and cause toxicity. To evaluate their toxicological outcomes, this study systematically analyzed a series of homogeneous hybrid lipid-coated AgNPs spanning sizes from 5 to 100 nm with diverse shapes (spheres, triangles, and cubes). The hybrid lipid membrane comprises hydrogenated phosphatidylcholine (HPC), sodium oleate (SOA), and hexanethiol (HT), which shield the AgNP surface from surface oxidation and toxic Ag+ ion release to minimize its contribution to toxicity. To reduce any significant effects by surface chemistry, the HPC, SOA, and HT membrane composition ratio was kept constant, and the AgNPs were assessed using embryonic zebrafish (Danio rerio). While a direct comparison cannot be drawn due to the lack of complementary sizes below 40 nm for triangular plates and cubes due to synthetic challenges, significant mortality was observed for spherical AgNPs (AgNSs) of 5, 20, 40, and 60 nm at 120 h postfertilization at concentrations ≥6 mg Ag/L. In contrast, the 10, 80, and 100 nm AgNSs, 40, 70, and 100 nm triangular plate AgNPs (AgNPLs), and 55, 75, and 100 nm cubic AgNPs (AgNCs) showed no significant mortality at 5 days postfertilization following exposure to AgNPs at concentrations up to 12 mg Ag/L. With constant surface chemistry on the AgNPs, size is the dominant factor driving toxicological responses, with smaller nanoparticles (5 to 60 nm) being the most toxic. Larger AgNSs, AgNCs, and AgNPLs from 75 to 100 nm do not show any evidence of toxicity. However, when closely examining sizes between 40 and 60 nm for AgNSs, AgNCs, and AgNPLs, there is evidence that discriminates shape as a driver of toxicity since sublethal responses generally were observed to follow a pattern, suggesting toxicity is most significant for AgNSs followed by AgNPLs and then AgNCs, which is the least toxic. Sum frequency generation vibrational spectroscopy showed that irrespective of size or shape, all hybrid lipid-coated AgNPs interact with membrane surfaces and "snorkel" between phases into the lipid monolayer with minimal energetic cost. These findings decisively demonstrate that not only smaller AgNPs but also the shape of the AgNPs influences their biological compatibility.


Asunto(s)
Membrana Celular , Nanopartículas del Metal , Tamaño de la Partícula , Plata , Pez Cebra , Plata/química , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/química , Propiedades de Superficie , Ácido Oléico/química , Fosfatidilcolinas/química , Lípidos/química
2.
Nanomaterials (Basel) ; 14(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38668148

RESUMEN

We investigated the impacts of spherical and triangular-plate-shaped lipid-coated silver nanoparticles (AgNPs) designed to prevent surface oxidation and silver ion (Ag+) dissolution in a small-scale microcosm to examine the role of shape and surface functionalization on biological interactions. Exposures were conducted in microcosms consisting of algae, bacteria, crustaceans, and fish embryos. Each microcosm was exposed to one of five surface chemistries within each shape profile (at 0, 0.1, or 0.5 mg Ag/L) to investigate the role of shape and surface composition on organismal uptake and toxicity. The hybrid lipid-coated AgNPs did not result in any significant release of Ag+ and had the most significant toxicity to D. magna, the most sensitive species, although the bacterial population growth rate was reduced in all exposures. Despite AgNPs resulting in increasing algal growth over the experiment, we found no correlation between algal growth and the survival of D. magna, suggesting that the impacts of the AgNPs on bacterial survival influenced algal growth rates. No significant impacts on zebrafish embryos were noted in any exposure. Our results demonstrate that the size, shape, and surface chemistry of AgNPs can be engineered to achieve specific goals while mitigating nanoparticle risks.

3.
J Biol Chem ; 298(2): 101552, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34973339

RESUMEN

Alpha-synuclein (aSyn) is a vertebrate protein, normally found within the presynaptic nerve terminal and nucleus, which is known to form somatic and neuritic aggregates in certain neurodegenerative diseases. Disease-associated aggregates of aSyn are heavily phosphorylated at serine-129 (pSyn), while normal aSyn protein is not. Within the nucleus, aSyn can directly bind DNA, but the mechanism of binding and the potential modulatory roles of phosphorylation are poorly understood. Here we demonstrate using a combination of electrophoretic mobility shift assay and atomic force microscopy approaches that both aSyn and pSyn can bind DNA within the major groove, in a DNA length-dependent manner and with little specificity for DNA sequence. Our data are consistent with a model in which multiple aSyn molecules bind a single 300 base pair (bp) DNA molecule in such a way that stabilizes the DNA in a bent conformation. We propose that serine-129 phosphorylation decreases the ability of aSyn to both bind and bend DNA, as aSyn binds 304 bp circular DNA forced into a bent shape, but pSyn does not. Two aSyn paralogs, beta- and gamma-synuclein, also interact with DNA differently than aSyn, and do not stabilize similar DNA conformations. Our work suggests that reductions in aSyn's ability to bind and bend DNA induced by serine-129 phosphorylation may be important for modulating aSyn's known roles in DNA metabolism, including the regulation of transcription and DNA repair.


Asunto(s)
ADN , alfa-Sinucleína , ADN/química , ADN/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Fosforilación , Serina/metabolismo , Relación Estructura-Actividad , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
4.
Nanomaterials (Basel) ; 11(6)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201075

RESUMEN

Silver nanoparticles (AgNPs) are widely used in commerce, however, the effect of their physicochemical properties on toxicity remains debatable because of the confounding presence of Ag+ ions. Thus, we designed a series of AgNPs that are stable to surface oxidation and Ag+ ion release. AgNPs were coated with a hybrid lipid membrane comprised of L-phosphatidylcholine (PC), sodium oleate (SOA), and a stoichiometric amount of hexanethiol (HT) to produce oxidant-resistant AgNPs, Ag-SOA-PC-HT. The stability of 7-month aged, 20-100 nm Ag-SOA-PC-HT NPs were assessed using UV-Vis, dynamic light scattering (DLS), and inductively coupled plasma mass spectrometry (ICP-MS), while the toxicity of the nanomaterials was assessed using a well-established, 5-day embryonic zebrafish assay at concentrations ranging from 0-12 mg/L. There was no change in the size of the AgNPs from freshly made samples or 7-month aged samples and minimal Ag+ ion release (<0.2%) in fishwater (FW) up to seven days. Toxicity studies revealed AgNP size- and concentration-dependent effects. Increased mortality and sublethal morphological abnormalities were observed at higher concentrations with smaller nanoparticle sizes. This study, for the first time, determined the effect of AgNP size on toxicity in the absence of Ag+ ions as a confounding variable.

5.
J Scholarsh Teach Learn ; 21(1): 241-286, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35992735

RESUMEN

Research experience provides critical training for new biomedical research scientists. Students from underrepresented populations studying science, technology, engineering, and mathematics (STEM) are increasingly recruited into research pathways to diversify STEM fields. However, support structures outside of research settings designed to help these students navigate biomedical research pathways are not always available; nor are program support components outside the context of laboratory technical skills training and formal mentorship well understood. This study leveraged a multi-institutional research training program, Enhancing Cross-Disciplinary Infrastructure and Training at Oregon (EXITO), to explore how nine institutions designed a new curricular structure (Enrichment) to meet a common goal of enhancing undergraduate research training and student success. EXITO undergraduates participated in a comprehensive, 3-year research training program with the Enrichment component offered across nine sites: three universities and six community colleges, highly diverse in size, demographics, and location. Sites' approaches to supporting students in the training program were studied over a 30-month period. All sites independently created their own nonformal curricular structures, implemented interprofessionally via facilitated peer groups. Site data describing design and implementation were thematically coded to identify essential programmatic components across sites, with student feedback used to triangulate findings. Enrichment offered students time to critically reflect on their interests, experiences, and identities in research; network with peers and professionals; and support negotiation of hidden and implicit curricula. Students reported the low-pressure setting and student-centered curriculum balanced the high demands associated with academics and research. Core curricular themes described Enrichment as fostering a sense of community among students, exposing students to career paths and skills, and supporting development of students' professional identities. The non-formal, interprofessional curricula enabled students to model diverse biomedical identities and pathways for each other while informing institutional structures to improve diverse undergraduate students' success in academia and research.

6.
Int J Nanomedicine ; 15: 4091-4104, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32606666

RESUMEN

INTRODUCTION: Humans are intentionally exposed to gold nanoparticles (AuNPs) where they are used in variety of biomedical applications as imaging and drug delivery agents as well as diagnostic and therapeutic agents currently in clinic and in a variety of upcoming clinical trials. Consequently, it is critical that we gain a better understanding of how physiochemical properties such as size, shape, and surface chemistry drive cellular uptake and AuNP toxicity in vivo. Understanding and being able to manipulate these physiochemical properties will allow for the production of safer and more efficacious use of AuNPs in biomedical applications. METHODS AND MATERIALS: Here, AuNPs of three sizes, 5 nm, 10 nm, and 20 nm, were coated with a lipid bilayer composed of sodium oleate, hydrogenated phosphatidylcholine, and hexanethiol. To understand how the physical features of AuNPs influence uptake through cellular membranes, sum frequency generation (SFG) was utilized to assess the interactions of the AuNPs with a biomimetic lipid monolayer composed of a deuterated phospholipid 1.2-dipalmitoyl-d62-sn-glycero-3-phosphocholine (dDPPC). RESULTS AND DISCUSSION: SFG measurements showed that 5 nm and 10 nm AuNPs are able to phase into the lipid monolayer with very little energetic cost, whereas, the 20 nm AuNPs warped the membrane conforming it to the curvature of hybrid lipid-coated AuNPs. Toxicity of the AuNPs were assessed in vivo to determine how AuNP curvature and uptake influence cell health. In contrast, in vivo toxicity tested in embryonic zebrafish showed rapid toxicity of the 5 nm AuNPs, with significant 24 hpf mortality occurring at concentrations ≥20 mg/L, whereas the 10 nm and 20 nm AuNPs showed no significant mortality throughout the five-day experiment. CONCLUSION: By combining information from membrane models using SFG spectroscopy with in vivo toxicity studies, a better mechanistic understanding of how nanoparticles (NPs) interact with membranes is developed to understand how the physiochemical features of AuNPs drive nanoparticle-membrane interactions, cellular uptake, and toxicity.


Asunto(s)
Membrana Celular/química , Oro/toxicidad , Lípidos/química , Membranas Artificiales , Nanopartículas del Metal/toxicidad , Tamaño de la Partícula , Pruebas de Toxicidad , Animales , Embrión no Mamífero/anomalías , Embrión no Mamífero/efectos de los fármacos , Humanos , Espectrofotometría Ultravioleta , Análisis Espectral , Pez Cebra/embriología
7.
RSC Adv ; 10(27): 15677-15693, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35493639

RESUMEN

The controlled synthesis of stable silver nanoparticles (AgNPs), that do not undergo surface oxidation and Ag+ ion dissolution, continues to be a major challenge. Here the synthesis of robust hybrid lipid-coated AgNPs, comprised of l-α-phosphatidylcholine (PC) membranes anchored by a stoichiometric amount of long-chained hydrophobic thiols and sodium oleate (SOA) as hydrophobic binding partners, that do not undergo surface oxidation and Ag+ ion dissolution, is described. UV-Visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), and inductively coupled plasma mass spectrometry (ICP-MS) demonstrate that in the presence of strong oxidants, such as potassium cyanide (KCN), the hybrid lipid-coated AgNPs are stable and do not undergo surface oxidation even in the presence of membrane destabilizing surfactants. UV-Vis studies show that the stability of hybrid lipid-coated AgNPs of various sizes and shapes is dependent on the length of the thiol hydrocarbon chain and can be ranked in the order of increasing stability as follows: propanethiol (PT) < hexanethiol (HT) ≤ decanethiol (DT). UV-Vis and ICP-MS studies show that the hybrid lipid-coated AgNPs do not change in size or shape confirming that the AgNPs do not undergo surface oxidation and Ag+ ion dissolution when placed in the presence of strong oxidants, chlorides, thiols, and low pH. Long-term stability studies, over 21 days, show that the hybrid lipid-coated AgNPs do not release Ag+ ions and are more stable. Overall, these studies demonstrate hybrid membrane encapsulation of nanomaterials is a viable method for stabilizing AgNPs in a "shape-locked" form that is unable to undergo surface oxidation, Ag+ ion release, aging, or shape conversion. More importantly, this design strategy is a simple approach to the synthesis and stabilization of AgNPs for a variety of biomedical and commercial applications where Ag+ ion release and toxicity is a concern. With robust and shielded AgNPs, investigators can now evaluate and correlate how the physical features of AgNPs influence toxicity without the confounding factor of Ag+ ions present in samples. This design strategy also provides an opportunity where the membrane composition can be tuned to control the release rate of Ag+ ions for optimizing antimicrobial activity.

8.
Molecules ; 19(5): 6754-75, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24858266

RESUMEN

The preparation of gold nanoparticles (AuNPs) of high purity and stability remains a major challenge for biological applications. This paper reports a simple synthetic strategy to prepare water-soluble peptide-stabilized AuNPs. Reduced glutathione, a natural tripeptide, was used as a synthon for the growth of two peptide chains directly on the AuNP surface. Both nonpolar (tryptophan and methionine) and polar basic (histidine and dansylated arginine) amino acids were conjugated to the GSH-capped AuNPs. Ultracentrifugation concentrators with polyethersulfone (PES) membranes were used to purify precursor materials in each stage of the multi-step synthesis to minimize side reactions. Thin layer chromatography, transmission electron microscopy, UV-Visible, 1H-NMR, and fluorescence spectroscopies demonstrated that ultracentrifugation produces high purity AuNPs, with narrow polydispersity, and minimal aggregation. More importantly, it allows for more control over the composition of the final ligand structure. Studies under conditions of varying pH and ionic strength revealed that peptide length, charge, and hydrophobicity influence the stability as well as solubility of the peptide-capped AuNPs. The synthetic and purification strategies used provide a facile route for developing a library of tailored biocompatible peptide-stabilized AuNPs for biomedical applications.


Asunto(s)
Glutatión/química , Nanopartículas del Metal/química , Sitios de Unión , Oro/química , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Transmisión , Polímeros/química , Solubilidad , Espectrometría de Fluorescencia , Espectroscopía Infrarroja por Transformada de Fourier , Sulfonas/química , Ultracentrifugación , Agua
9.
J Phys Chem B ; 114(16): 5556-62, 2010 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-20364851

RESUMEN

Lipid-coated metal nanoparticles are developed here as a mimic of low-density lipoprotein (LDL) particles and used to study C-reactive protein (CRP) binding to highly curved lipid membranes. A 12 nm shift in the localized surface plasmon resonance (LSPR) was observed when CRP was added to the lipid-coated gold nanoparticles. Transmission electron microscopy (TEM) revealed that CRP induced a structural change to the lipids, resulting in clusters of nanoparticles. This clustering provides a visualization of how CRP could cause the aggregation of LDL particles, which is a key step in atherosclerosis. The cluster formation and resultant LSPR shift requires the presence of both CRP and calcium. Fluorescence anisotropy, using a CRP-specific, fluorophore-labeled aptamer confirmed that CRP was bound to the lipid-coated nanoparticles. An increase in the fluorescence anisotropy (Delta r = +0.261 +/- 0.004) of the aptamer probe occurs in the presence of CRP, PC-coated nanoparticles, and calcium. Subsequent sequestration of calcium by EDTA leads to a decrease in the anisotropy (Delta r = -0.233 +/- 0.011); however, there is no change in the LSPR and no change to the cluster structure observed by TEM. This indicates that CRP binds to the PC membrane on the nanoparticle surface reversibly through a calcium bridging mechanism while changing the underlying membrane structure irreversibly as a result of binding.


Asunto(s)
Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Proteína C-Reactiva/metabolismo , Lipoproteínas/química , Nanopartículas/química , Fosfatidilcolinas/metabolismo , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/metabolismo , Secuencia de Bases , Calcio/metabolismo , Ácido Edético/metabolismo , Polarización de Fluorescencia , Humanos , Nanopartículas del Metal/química , Microscopía Electrónica de Transmisión , Resonancia por Plasmón de Superficie
10.
Chem Commun (Camb) ; (26): 3013-5, 2008 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-18688332

RESUMEN

Hybrid bilayers composed of the lipid phosphatidylcholine (PC) and a submonolayer of 1-decanethiol bound to gold nanoparticles are very stable to potassium cyanide.


Asunto(s)
Cianuros/química , Membrana Dobles de Lípidos/química , Nanopartículas del Metal/química , Alcanos/química , Estabilidad de Medicamentos , Fosfatidilcolinas/química , Compuestos de Sulfhidrilo/química
11.
Nanotechnology ; 19(11): 115607, 2008 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-21730558

RESUMEN

Phosphatidylcholine (PC) is a versatile ligand for synthesizing gold nanoparticles that are soluble in either organic or aqueous media. Here we report a novel route to organic-soluble, PC-stabilized gold nanoparticles that can be re-suspended in water after removal of the organic solvent. Similarly, we show that PC-stabilized gold nanoparticles synthesized in water can be re-suspended in organic solvents after complete removal of water. Without complete removal of the solvent, the nanoparticles retain their original solubility and do not phase transfer. This change in solvent preference from organic to aqueous and vice versa without the use of an additional phase transfer reagent is novel, visually striking, and of utility for synthetic modification of nanoparticles. This approach allows chemical reactions to be performed on nanoparticles in organic solvents followed by conversion of the products to water-soluble materials. A narrow distribution of PC-stabilized gold nanoparticles was obtained after phase transfer to water as characterized by UV-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM), demonstrating that the narrow distribution obtained from the organic synthesis is retained after transfer to water. This method produces water-soluble nanoparticles with a narrower dispersity than is possible with direct aqueous synthesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...