Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(6): 065103, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38394600

RESUMEN

Fusion "scientific breakeven" (i.e., unity target gain G_{target}, total fusion energy out > laser energy input) has been achieved for the first time (here, G_{target}∼1.5). This Letter reports on the physics principles of the design changes that led to the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce target gain greater than unity and exceeded the previously obtained conditions needed for ignition by the Lawson criterion. Key elements of the success came from reducing "coast time" (the time duration between the end of the laser pulse and implosion peak compression) and maximizing the internal energy delivered to the "hot spot" (the yield producing part of the fusion fuel). The link between coast time and maximally efficient conversion of kinetic energy into internal energy is explained. The energetics consequences of asymmetry and hydrodynamic-induced mixing were part of high-yield big radius implosion design experimental and design strategy. Herein, it is shown how asymmetry and mixing consolidate into one key relationship. It is shown that mixing distills into a kinetic energy cost similar to the impact of implosion asymmetry, shifting the threshold for ignition to higher implosion kinetic energy-a factor not normally included in most statements of the generalized Lawson criterion, but the key needed modifications clearly emerge.

2.
Phys Rev Lett ; 129(27): 275001, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36638294

RESUMEN

We present measurements of ice-ablator mix at stagnation of inertially confined, cryogenically layered capsule implosions. An ice layer thickness scan with layers significantly thinner than used in ignition experiments enables us to investigate mix near the inner ablator interface. Our experiments reveal for the first time that the majority of atomically mixed ablator material is "dark" mix. It is seeded by the ice-ablator interface instability and located in the relatively cooler, denser region of the fuel assembly surrounding the fusion hot spot. The amount of dark mix is an important quantity as it is thought to affect both fusion fuel compression and burn propagation when it turns into hot mix as the burn wave propagates through the initially colder fuel region surrounding an igniting hot spot. We demonstrate a significant reduction in ice-ablator mix in the hot-spot boundary region when we increase the initial ice layer thickness.

3.
Phys Rev E ; 101(3-1): 033205, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32290020

RESUMEN

We present direct measurements of electron temperature variations within an inertially confined deuterium-tritium plasma caused by localized mix of higher-Z materials into the central hot spot. The data are derived from newly developed differentially filtered penumbral imaging of the bremsstrahlung continuum emission. Our analysis reveals distinct localized emitting features in the stagnated hot-spot plasma, and we infer spatial variations in the electron temperature: the mixed region is 660±130eV colder than the surrounding hot-spot plasma at 3.26±0.11keV. Our analysis of the energy flow shows that we measure approximately steady-state conditions where the radiative losses in the mix region are balanced by heat conduction from the surrounding hot deuterium-tritium plasma.

4.
Phys Rev Lett ; 121(9): 095002, 2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-30230893

RESUMEN

We report on the first multilocation electron temperature (T_{e}) and flow measurements in an ignition hohlraum at the National Ignition Facility using the novel technique of mid-Z spectroscopic tracer "dots." The measurements define a low resolution "map" of hohlraum plasma conditions and provide a basis for the first multilocation tests of particle and energy transport physics in a laser-driven x-ray cavity. The data set is consistent with classical heat flow near the capsule but reduced heat flow near the laser entrance hole. We evaluate the role of kinetic effects, self-generated magnetic fields, and instabilities in causing spatially dependent heat transport in the hohlraum.

5.
Phys Rev Lett ; 117(22): 225001, 2016 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-27925731

RESUMEN

Using a large volume high-energy-density fluid shear experiment (8.5 cm^{3}) at the National Ignition Facility, we have demonstrated for the first time the ability to significantly alter the evolution of a supersonic sheared mixing layer by controlling the initial conditions of that layer. By altering the initial surface roughness of the tracer foil, we demonstrate the ability to transition the shear mixing layer from a highly ordered system of coherent structures to a randomly ordered system with a faster growing mix layer, indicative of strong mixing in the layer at a temperature of several tens of electron volts and at near solid density. Simulations using a turbulent-mix model show good agreement with the experimental results and poor agreement without turbulent mix.

6.
Rev Sci Instrum ; 86(10): 103511, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26520959

RESUMEN

Filtered x-ray diode (XRD) arrays are often used to measure x-ray spectra vs. time from spectrally continuous x-ray sources such as hohlraums. A priori models of the incident x-ray spectrum enable a more accurate unfolding of the x-ray flux as compared to the standard technique of modifying a thermal Planckian with spectral peaks or dips at the response energy of each filtered XRD channel. A model x-ray spectrum consisting of a thermal Planckian, a Gaussian at higher energy, and (in some cases) a high energy background provides an excellent fit to XRD-array measurements of x-ray emission from laser heated hohlraums. If high-resolution measurements of part of the x-ray emission spectrum are available, that information can be included in the a priori model. In cases where the x-ray emission spectrum is not Planckian, candidate x-ray spectra can be allowed or excluded by fitting them to measured XRD voltages. Examples are presented from the filtered XRD arrays, named Dante, at the National Ignition Facility and the Laboratory for Laser Energetics.

7.
Rev Sci Instrum ; 85(11): 11D621, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25430197

RESUMEN

We present a diagnostic technique used to spatially multiplex two x-ray radiographs of an object onto a detector along a single line-of-sight. This technique uses a thin, <2 µm, cosputtered backlighter target to simultaneously produce both Ni and Zn Heα emission. A Ni picket fence filter, 500 µm wide bars and troughs, is then placed in front of the detector to pass only the Ni Heα emission in the bar region and both energies in the trough region thereby spatially multiplexing the two radiographs on a single image. Initial experimental results testing the backlighter spectrum are presented along with simulated images showing the calculated radiographic images though the nickel picket fence filter which are used to measure the mix width in an accelerated nickel foam.

8.
Phys Rev Lett ; 112(10): 105003, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24679301

RESUMEN

Indirect drive experiments at the National Ignition Facility are designed to achieve fusion by imploding a fuel capsule with x rays from a laser-driven hohlraum. Previous experiments have been unable to determine whether a deficit in measured ablator implosion velocity relative to simulations is due to inadequate models of the hohlraum or ablator physics. ViewFactor experiments allow for the first time a direct measure of the x-ray drive from the capsule point of view. The experiments show a 15%-25% deficit relative to simulations and thus explain nearly all of the disagreement with the velocity data. In addition, the data from this open geometry provide much greater constraints on a predictive model of laser-driven hohlraum performance than the nominal ignition target.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...