Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Xenotransplantation ; 23(6): 444-463, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27862363

RESUMEN

BACKGROUND: The use of porcine islets to replace insulin-producing islet ß-cells, destroyed during the diabetogenic disease process, presents distinct challenges if this option is to become a therapeutic reality for the treatment of type 1 diabetes. These challenges include a thorough evaluation of the microbiological safety of the islets. In this study, we describe a robust porcine islet-screening program that provides a high level of confidence in the microbiological safety of porcine islets suitable for clinical trials. METHODS: A four-checkpoint program systematically screens the donor herd (Large White - Yorkshire × Landrace F1 hybrid animals), individual sentinel and pancreas donor animals and, critically, the islet macrobeads themselves. Molecular assays screen for more than 30 known viruses, while electron microscopy and in vitro studies are employed to screen for potential new or divergent (emergent) viruses. RESULTS: Of 1207 monthly samples taken from random animals over a 2-year period, only a single positive result for Transmissible gastroenteritis virus was observed, demonstrating the high level of biosecurity maintained in the source herd. Given the lack of clinical signs, positive antibody titers for Porcine reproductive and respiratory syndrome virus, Porcine parvovirus, and Influenza A confirm the efficacy of the herd vaccination program. Porcine respiratory coronavirus was found to be present in the herd, as expected for domestic swine. Tissue homogenate samples from six sentinel and 11 donor animals, over the same 2-year period, were negative for the presence of viruses when co-cultured with six different cell lines from four species. The absence of adventitious viruses in separate islet macrobead preparations produced from 12 individual pancreas donor animals was confirmed using validated molecular (n = 32 viruses), in vitro culture (cells from four species), and transmission electron microscopy assays (200 cell profiles per donor animal) over the same 2-year period. There has been no evidence of viral transmission following the implantation of these same encapsulated and functional porcine islets into non-immunosuppressed diabetic cynomolgus macaques for up to 4 years. Isolated peripheral blood mononuclear cells from all time points were negative for PCV (Type 2), PLHV, PRRSV, PCMV, and PERV-A, PERV-B, and PERV-C by PCR analysis in all six recipient animals. CONCLUSION: The four-checkpoint program is a robust and reliable method for characterization of the microbiological safety of encapsulated porcine islets intended for clinical trials.


Asunto(s)
Leucocitos Mononucleares/citología , Páncreas/microbiología , Trasplante Heterólogo , Animales , Línea Celular , Diabetes Mellitus Tipo 1/terapia , Insulina/metabolismo , Secreción de Insulina , Páncreas/metabolismo , Trasplante de Páncreas , Sefarosa/farmacología , Porcinos , Trasplante Heterólogo/métodos
2.
Biologicals ; 36(1): 27-36, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17890100

RESUMEN

Manufacturing processes used in the production of biopharmaceutical or biological products should be evaluated for their ability to remove potential contaminants, including TSE agents. In the present study, we have evaluated scrapie prion protein (PrP Sc) removal in the presence of different starting materials, using virus removal filters of different pore sizes. Following 75 nm filtration, PrP Sc was detected in the filtrate by Western blot (WB) analysis when a "super-sonicated" microsomal fraction derived from hamster adapted scrapie strain 263K (263K MF) was used as the spike material. In contrast, no PrP Sc was detected when an untreated 263K MF was used. By using spike materials prepared in a manner designed to optimize the particle size distribution within the preparation, only 15 nm filtration was shown to remove PrP Sc to below the limits of detection of the WB assays used under all the experimental conditions. However, infectious PrP Sc was recovered following 15 nm filtration under one experimental condition. The results obtained suggest that the nature of the spike preparation is an important factor in evaluating the ability of filters to remove prions, and that procedures designed to minimize the particle size distribution of the prion spike, such as the "super-sonication" or detergent treatments described herein, should be used for the preparation of the spike materials.


Asunto(s)
Filtración/métodos , Nanoestructuras , Nanotecnología/métodos , Priones/aislamiento & purificación , Animales , Cricetinae , Tamaño de la Partícula , Priones/patogenicidad
3.
Biologicals ; 33(2): 87-94, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15939286

RESUMEN

BACKGROUND AND OBJECTIVES: Recent experimental evidence from rodent models suggests a potential risk for transmissible spongiform encephalopathy (TSE) transmission by blood. The emergence of a new variant Creutzfeldt-Jakob disease (vCJD) has raised increased concerns about the safety of blood components and plasma products derived from vCJD-infected donors. Recent risk-minimisation strategies have included a ban on the use of UK-sourced plasma for the preparation of licensed blood products and leukodepletion of blood donations for fear of possible transmission of the human TSE via blood or blood components. The aim of this study was to investigate the capability and efficacy of a preparative electrophoresis system (Gradiflow) in the removal of TSE contaminants during the separation of plasma products. MATERIALS AND METHODS: Using hamster adapted scrapie 263 K as a model for TSE agent, albumin and IgG separation from human plasma by Gradiflow were performed separately by spiking a 263 K scrapie microsomal fraction to the feed material at each process step. Samples from pre- and post-Gradiflow separation process were titrated to the end-point for the detection of the disease-associated, proteinase K resistant form of the pathogenic prion protein (PrP(Sc)) by Western blot. RESULTS: Under all conditions tested, a greater than 3 log(10) reduction was achieved with no PrP(Sc) detected in any of the pooled products for either of the IgG or albumin separations. These data show that Gradiflow processing has clear advantages for concurrent purification of plasma products and in-process TSE removal. CONCLUSIONS: Our findings suggest that Gradiflow process is a viable alternative to remove causative TSE agents during plasma products separation, potentially eliminating the risk of TSE agents transmission.


Asunto(s)
Sangre , Proteínas PrPSc/sangre , Enfermedades por Prión/prevención & control , Animales , Western Blotting , Cricetinae , Humanos , Enfermedades por Prión/transmisión , Ultracentrifugación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...