Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(2): e11019, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38352197

RESUMEN

Ectotherms make up the majority of terrestrial biodiversity, so it is important to understand their potential responses to climate change. Often, models aiming to achieve this understanding correlate species distributions with ambient air temperature. However, this assumes a constant relationship between the air temperature and body temperature, which determines an ectotherm's thermal performance. To test this assumption, we develop and validate a method for retrospective estimation of ectotherm body temperature using heat exchange equations. We apply the model to predict the body temperature of wild field crickets (Gryllus campestris) in Northern Spain for 1985-2019 and compare these values to air temperature. We show that while air temperature impacts ectotherm body temperature, it captures only a fraction of its thermal experience. Solar radiation can increase the body temperature by more than 20°C above air temperature with implications for physiology and behaviour. The effect of solar radiation on body temperature is particularly important given that climate change will alter cloud cover. Our study shows that the impacts of climate change on species cannot be assumed to be proportional only to changing air temperature. More reliable models of future species distributions require mechanistic links between environmental conditions and thermal ecophysiologies of species.

2.
Curr Biol ; 33(21): 4721-4726.e2, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37863061

RESUMEN

Agriculture expansion is already the primary cause of terrestrial biodiversity loss globally1,2; yet, to meet the demands of growing human populations, production is expected to have to double by 2050.3 The challenge of achieving expansion without further detriment to the environment and biodiversity is huge and potentially compounded by climate change, which may necessitate shifting agriculture zones poleward to regions with more suitable climates,4 threatening species or areas of conservation priority.5,6,7 However, the possible future overlap between agricultural suitability and wilderness areas, increasingly recognized for significant biodiversity, cultural, and climate regulation values, has not yet been examined. Here, using high-resolution climate data, we model global present and future climate suitability for 1,708 crop varieties. We project, over the next 40 years, that 2.7 million km2 of land within wilderness will become newly suitable for agriculture, equivalent to 7% of the total wilderness area outside Antarctica. The increase in potentially cultivable land in wilderness areas is particularly acute at higher latitudes in the northern hemisphere, where 76.3% of newly suitable land is currently wilderness, equivalent to 10.2% of the total wilderness area. Our results highlight an important and previously unidentified possible consequence of the disproportionate warming known to be occurring in high northern latitudes. Because we find that, globally, 72.0% of currently cultivable land is predicted to experience a net loss in total crop diversity, agricultural expansion is a major emerging threat to wilderness. Without protection, the vital integrity of these valuable areas could be irreversibly lost.


Asunto(s)
Conservación de los Recursos Naturales , Vida Silvestre , Humanos , Conservación de los Recursos Naturales/métodos , Biodiversidad , Agricultura , Cambio Climático , Ecosistema
3.
Glob Chang Biol ; 29(11): 2886-2892, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37128754

RESUMEN

Microclimate research gained renewed interest over the last decade and its importance for many ecological processes is increasingly being recognized. Consequently, the call for high-resolution microclimatic temperature grids across broad spatial extents is becoming more pressing to improve ecological models. Here, we provide a new set of open-access bioclimatic variables for microclimate temperatures of European forests at 25 × 25 m2 resolution.


Asunto(s)
Microclima , Árboles , Temperatura , Bosques , Ecosistema
4.
Nat Commun ; 14(1): 211, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639376

RESUMEN

The world's warm deserts are predicted to experience disproportionately large temperature increases due to climate change, yet the impacts on global desert biodiversity remain poorly understood. Because species in warm deserts live close to their physiological limits, additional warming may induce local extinctions. Here, we combine climate change projections with biophysical models and species distributions to predict physiological impacts of climate change on desert birds globally. Our results show heterogeneous impacts between and within warm deserts. Moreover, spatial patterns of physiological impacts do not simply mirror air temperature changes. Climate change refugia, defined as warm desert areas with high avian diversity and low predicted physiological impacts, are predicted to persist in varying extents in different desert realms. Only a small proportion (<20%) of refugia fall within existing protected areas. Our analysis highlights the need to increase protection of refugial areas within the world's warm deserts to protect species from climate change.


Asunto(s)
Aves , Cambio Climático , Animales , Aves/fisiología , Biodiversidad , Temperatura , Ecosistema , Clima Desértico
5.
Sci Data ; 10(1): 40, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658147

RESUMEN

The Arctic is the region on Earth that is warming at the fastest rate. In addition to rising means of temperature-related variables, Arctic ecosystems are affected by increasingly frequent extreme weather events causing disturbance to Arctic ecosystems. Here, we introduce a new dataset of bioclimatic indices relevant for investigating the changes of Arctic terrestrial ecosystems. The dataset, called ARCLIM, consists of several climate and event-type indices for the northern high-latitude land areas > 45°N. The indices are calculated from the hourly ERA5-Land reanalysis data for 1950-2021 in a spatial grid of 0.1 degree (~9 km) resolution. The indices are provided in three subsets: (1) the annual values during 1950-2021; (2) the average conditions for the 1991-2020 climatology; and (3) temporal trends over 1951-2021. The 72-year time series of various climate and event-type indices draws a comprehensive picture of the occurrence and recurrence of extreme weather events and climate variability of the changing Arctic bioclimate.

7.
Glob Chang Biol ; 29(6): 1451-1470, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36515542

RESUMEN

A core challenge in global change biology is to predict how species will respond to future environmental change and to manage these responses. To make such predictions and management actions robust to novel futures, we need to accurately characterize how organisms experience their environments and the biological mechanisms by which they respond. All organisms are thermodynamically connected to their environments through the exchange of heat and water at fine spatial and temporal scales and this exchange can be captured with biophysical models. Although mechanistic models based on biophysical ecology have a long history of development and application, their use in global change biology remains limited despite their enormous promise and increasingly accessible software. We contend that greater understanding and training in the theory and methods of biophysical ecology is vital to expand their application. Our review shows how biophysical models can be implemented to understand and predict climate change impacts on species' behavior, phenology, survival, distribution, and abundance. It also illustrates the types of outputs that can be generated, and the data inputs required for different implementations. Examples range from simple calculations of body temperature at a particular site and time, to more complex analyses of species' distribution limits based on projected energy and water balances, accounting for behavior and phenology. We outline challenges that currently limit the widespread application of biophysical models relating to data availability, training, and the lack of common software ecosystems. We also discuss progress and future developments that could allow these models to be applied to many species across large spatial extents and timeframes. Finally, we highlight how biophysical models are uniquely suited to solve global change biology problems that involve predicting and interpreting responses to environmental variability and extremes, multiple or shifting constraints, and novel abiotic or biotic environments.


Asunto(s)
Cambio Climático , Ecosistema , Ecología , Predicción , Calor
8.
Philos Trans R Soc Lond B Biol Sci ; 377(1848): 20210021, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35184597

RESUMEN

Climate-driven geographic range shifts have been associated with transitions between dietary specialism and generalism at range margins. The mechanisms underpinning these often transient niche breadth modifications are poorly known, but utilization of novel resources likely depends on phenological synchrony between the consumer and resource. We use a climate-driven range and host shift by the butterfly Aricia agestis to test how climate-driven changes in host phenology and condition affect phenological synchrony, and consider implications for host use. Our data suggest that the perennial plant that was the primary host before range expansion is a more reliable resource than the annual Geraniaceae upon which the butterfly has become specialized in newly colonized parts of its range. In particular, climate-driven phenological variation in the novel host Geranium dissectum generates a narrow and variable 'window of opportunity' for larval productivity in summer. Therefore, although climatic change may allow species to shift hosts and colonise novel environments, specialization on phenologically limited hosts may not persist at ecological margins as climate change continues. We highlight the potential role for phenological (a)synchrony in determining lability of consumer-resource associations at range margins and the importance of considering causes of synchrony in biotic interactions when predicting range shifts. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.


Asunto(s)
Mariposas Diurnas , Herbivoria , Animales , Cambio Climático , Insectos , Estaciones del Año
9.
Ecol Evol ; 12(2): e8623, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35169459

RESUMEN

Climate change can not only increase the exposure of organisms to higher temperatures but can also drive phenological shifts that alter their susceptibility to conditions at the onset of breeding cycles. Organisms rely on climatic cues to time annual life cycle events, but the extent to which climate change has altered cue reliability remains unclear. Here, we examined the risk of a "climate trap"-a climatically driven desynchronization of the cues that determine life cycle events and fitness later in the season in a temperate reptile, the European adder (Vipera berus). During the winter, adders hibernate underground, buffered against subzero temperatures, and re-emerge in the spring to reproduce. We derived annual spring-emergence trends between 1983 and 2017 from historical observations in Cornwall, UK, and related these trends to the microclimatic conditions that adders experienced. Using a mechanistic microclimate model, we computed below- and near-ground temperatures to derive accumulated degree-hour and absolute temperature thresholds that predicted annual spring-emergence timing. Trends in annual-emergence timing and subsequent exposure to ground frost were then quantified. We found that adders have advanced their phenology toward earlier emergence. Earlier emergence was associated with increased exposure to ground frost and, contradicting the expected effects of macroclimate warming, increased post-emergence exposure to ground frost at some locations. The susceptibility of adders to this "climate trap" was related to the rate at which frost risk diminishes relative to advancement in phenology, which depends on the seasonality of climate. We emphasize the need to consider exposure to changing microclimatic conditions when forecasting biological impacts of climate change.

10.
Biol Rev Camb Philos Soc ; 97(1): 343-360, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34609062

RESUMEN

Remote sensing has revolutionised many aspects of ecological research, enabling spatiotemporal data to be collected in an efficient and highly automated manner. The last two decades have seen phenomenal growth in capabilities for high-resolution remote sensing that increasingly offers opportunities to study small, but ecologically important organisms, such as insects. Here we review current applications for using remote sensing within entomological research, highlighting the emerging opportunities that now arise through advances in spatial, temporal and spectral resolution. Remote sensing can be used to map environmental variables, such as habitat, microclimate and light pollution, capturing data on topography, vegetation structure and composition, and luminosity at spatial scales appropriate to insects. Such data can also be used to detect insects indirectly from the influences that they have on the environment, such as feeding damage or nest structures, whilst opportunities for directly detecting insects are also increasingly available. Entomological radar and light detection and ranging (LiDAR), for example, are transforming our understanding of aerial insect abundance and movement ecology, whilst ultra-high spatial resolution drone imagery presents tantalising new opportunities for direct observation. Remote sensing is rapidly developing into a powerful toolkit for entomologists, that we envisage will soon become an integral part of insect science.


Asunto(s)
Ecosistema , Tecnología de Sensores Remotos , Animales , Insectos
11.
Glob Chang Biol ; 28(9): 3110-3144, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34967074

RESUMEN

Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.


Asunto(s)
Ecosistema , Suelo , Cambio Climático , Microclima , Temperatura
12.
Glob Chang Biol ; 27(23): 6307-6319, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34605132

RESUMEN

Ecological research heavily relies on coarse-gridded climate data based on standardized temperature measurements recorded at 2 m height in open landscapes. However, many organisms experience environmental conditions that differ substantially from those captured by these macroclimatic (i.e. free air) temperature grids. In forests, the tree canopy functions as a thermal insulator and buffers sub-canopy microclimatic conditions, thereby affecting biological and ecological processes. To improve the assessment of climatic conditions and climate-change-related impacts on forest-floor biodiversity and functioning, high-resolution temperature grids reflecting forest microclimates are thus urgently needed. Combining more than 1200 time series of in situ near-surface forest temperature with topographical, biological and macroclimatic variables in a machine learning model, we predicted the mean monthly offset between sub-canopy temperature at 15 cm above the surface and free-air temperature over the period 2000-2020 at a spatial resolution of 25 m across Europe. This offset was used to evaluate the difference between microclimate and macroclimate across space and seasons and finally enabled us to calculate mean annual and monthly temperatures for European forest understories. We found that sub-canopy air temperatures differ substantially from free-air temperatures, being on average 2.1°C (standard deviation ± 1.6°C) lower in summer and 2.0°C higher (±0.7°C) in winter across Europe. Additionally, our high-resolution maps expose considerable microclimatic variation within landscapes, not captured by the gridded macroclimatic products. The provided forest sub-canopy temperature maps will enable future research to model below-canopy biological processes and patterns, as well as species distributions more accurately.


Asunto(s)
Bosques , Microclima , Cambio Climático , Temperatura , Árboles
13.
Biol Lett ; 17(8): 20210175, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34343435

RESUMEN

The consequences of climate change for biogeographic range dynamics depend on the spatial scales at which climate influences focal species directly and indirectly via biotic interactions. An overlooked question concerns the extent to which microclimates modify specialist biotic interactions, with emergent properties for communities and range dynamics. Here, we use an in-field experiment to assess egg-laying behaviour of a range-expanding herbivore across a range of natural microclimatic conditions. We show that variation in microclimate, resource condition and individual fecundity can generate differences in egg-laying rates of almost two orders of magnitude in an exemplar species, the brown argus butterfly (Aricia agestis). This within-site variation in fecundity dwarfs variation resulting from differences in average ambient temperatures among populations. Although higher temperatures did not reduce female selection for host plants in good condition, the thermal sensitivities of egg-laying behaviours have the potential to accelerate climate-driven range expansion by increasing egg-laying encounters with novel hosts in increasingly suitable microclimates. Understanding the sensitivity of specialist biotic interactions to microclimatic variation is, therefore, critical to predict the outcomes of climate change across species' geographical ranges, and the resilience of ecological communities.


Asunto(s)
Mariposas Diurnas , Microclima , Animales , Cambio Climático , Ecosistema , Femenino , Herbivoria , Plantas , Temperatura
14.
Glob Chang Biol ; 26(12): 7099-7111, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32998181

RESUMEN

The impacts of the changing climate on the biological world vary across latitudes, habitats and spatial scales. By contrast, the time of day at which these changes are occurring has received relatively little attention. As biologically significant organismal activities often occur at particular times of day, any asymmetry in the rate of change between the daytime and night-time will skew the climatic pressures placed on them, and this could have profound impacts on the natural world. Here we determine global spatial variation in the difference in the mean annual rate at which near-surface daytime maximum and night-time minimum temperatures and mean daytime and mean night-time cloud cover, specific humidity and precipitation have changed over land. For the years 1983-2017, we derived hourly climate data and assigned each hour as occurring during daylight or darkness. In regions that showed warming asymmetry of >0.5°C (equivalent to mean surface temperature warming during the 20th century) we investigated corresponding changes in cloud cover, specific humidity and precipitation. We then examined the proportional change in leaf area index (LAI) as one potential biological response to diel warming asymmetry. We demonstrate that where night-time temperatures increased by >0.5°C more than daytime temperatures, cloud cover, specific humidity and precipitation increased. Conversely, where daytime temperatures increased by >0.5°C more than night-time temperatures, cloud cover, specific humidity and precipitation decreased. Driven primarily by increased cloud cover resulting in a dampening of daytime temperatures, over twice the area of land has experienced night-time warming by >0.25°C more than daytime warming, and has become wetter, with important consequences for plant phenology and species interactions. Conversely, greater daytime relative to night-time warming is associated with hotter, drier conditions, increasing species vulnerability to heat stress and water budgets. This was demonstrated by a divergent response of LAI to warming asymmetry.


Asunto(s)
Ecosistema , Hojas de la Planta , Cambio Climático , Calor , Humedad , Temperatura
15.
Glob Chang Biol ; 26(12): 6657-6666, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32956542

RESUMEN

Many analyses of biological responses to climate rely on gridded climate data derived from weather stations, which differ from the conditions experienced by organisms in at least two respects. First, the microclimate recorded by a weather station is often quite different to that near the ground surface, where many organisms live. Second, the temporal and spatial resolutions of gridded climate datasets derived from weather stations are often too coarse to capture the conditions experienced by organisms. Temporally and spatially coarse data have clear benefits in terms of reduced model size and complexity, but here we argue that coarse-grained data introduce errors that, in biological studies, are too often ignored. However, in contrast to common perception, these errors are not necessarily caused directly by a spatial mismatch between the size of organisms and the scale at which climate data are collected. Rather, errors and biases are primarily due to (a) systematic discrepancies between the climate used in analysis and that experienced by organisms under study; and (b) the non-linearity of most biological responses in combination with differences in climate variance between locations and time periods for which models are fitted and those for which projections are made. We discuss when exactly problems of scale can be expected to arise and highlight the potential to circumvent these by spatially and temporally down-scaling climate. We also suggest ways in which adjustments to deal with issues of scale could be made without the need to run high-resolution models over wide extents.


Asunto(s)
Cambio Climático , Clima , Predicción , Microclima , Tiempo (Meteorología)
16.
Glob Chang Biol ; 26(11): 6616-6629, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32311220

RESUMEN

Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.


Asunto(s)
Ecosistema , Microclima , Cambio Climático , Nieve , Temperatura
17.
Glob Chang Biol ; 26(2): 1003-1011, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31638296

RESUMEN

Most studies on the biological effects of future climatic changes rely on seasonally aggregated, coarse-resolution data. Such data mask spatial and temporal variability in microclimate driven by terrain, wind and vegetation, and ultimately bear little resemblance to the conditions that organisms experience in the wild. Here, I present the methods for providing fine-grained, hourly and daily estimates of current and future temperature and soil moisture over decadal timescales. Observed climate data and spatially coherent probabilistic projections of daily future weather were disaggregated to hourly and used to drive empirically calibrated physical models of thermal and hydrological microclimates. Mesoclimatic effects (cold-air drainage, coastal exposure and elevation) were determined from the coarse-resolution climate surfaces using thin-plate spline models with coastal exposure and elevation as predictors. Differences between micro and mesoclimate temperatures were determined from terrain, vegetation and ground properties using energy balance equations. Soil moisture was computed in a thin upper layer and an underlying deeper layer, and the exchange of water between these layers was calculated using the van Genuchten equation. Code for processing the data and running the models is provided as a series of R packages. The methods were applied to the Lizard Peninsula, United Kingdom, to provide hourly estimates of temperature (100 m grid resolution over entire area, 1 m for a selected area) for the periods 1983-2017 and 2041-2049. Results indicated that there is a fine-resolution variability in climatic changes, driven primarily by interactions between landscape features and decadal trends in weather conditions. High-temporal resolution extremes in conditions under future climate change were predicted to be considerably less novel than the extremes estimated using seasonally aggregated variables. The study highlights the need to more accurately estimate the future climatic conditions experienced by organisms and equips biologists with the means to do so.


Asunto(s)
Cambio Climático , Microclima , Suelo , Temperatura , Reino Unido
18.
Ecol Appl ; 29(8): e01989, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31376197

RESUMEN

Species-focused conservation planning is often based on reducing local extinction risk at key sites. However, with increasing levels of habitat fragmentation and pressures from climate change and overexploitation, surrounding landscapes also influence the persistence of species populations, and their effects are increasingly incorporated in conservation planning and management for both species and communities. Here, we present a framework based on metapopulation dynamics in fragmented landscapes, for quantifying the survival (resistance) and reestablishment of species populations following localized extinction events (resilience). We explore the application of this framework to guide the conservation of a group of threatened bird species endemic to papyrus (Cyperus papyrus) swamps in East and Central Africa. Using occupancy data for five species collected over two years from a network of wetlands in Uganda, we determine the local and landscape factors that influence local extinction and colonization, and map expected rates of population turnover across the network to draw inferences about the locations that contribute most to regional resistance and resilience for all species combined. Slight variation in the factors driving extinction and colonization between individual papyrus birds led to species-specific differences in the spatial patterns of site-level resistance and resilience. However, despite this, locations with the highest resistance and/or resilience overlapped for most species and reveal where resources could be invested for multispecies persistence. This novel simplified framework can aid decision making associated with conservation planning and prioritization for multiple species residing in overlapping, fragmented habitats; helping to identify key sites that warrant urgent conservation protection, with consideration of the need to adapt and respond to future change.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Aves , Cambio Climático , Extinción Biológica , Humedales
19.
Oecologia ; 183(4): 939-951, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28116524

RESUMEN

Savanna ecosystems are an integral part of the African landscape and sustain the livelihoods of millions of people. Woody encroachment in savannas is a widespread phenomenon but its causes are widely debated. We review the extensive literature on woody encroachment to help improve understanding of the possible causes and to highlight where and how future scientific efforts to fully understand these causes should be focused. Rainfall is the most important determinant of maximum woody cover across Africa, but fire and herbivory interact to reduce woody cover below the maximum at many locations. We postulate that woody encroachment is most likely driven by CO2 enrichment and propose a two-system conceptual framework, whereby mechanisms of woody encroachment differ depending on whether the savanna is a wet or dry system. In dry savannas, the increased water-use efficiency in plants relaxes precipitation-driven constraints and increases woody growth. In wet savannas, the increase of carbon allocation to tree roots results in faster recovery rates after disturbance and a greater likelihood of reaching sexual maturity. Our proposed framework can be tested using a mixture of experimental and earth observational techniques. At a local level, changes in precipitation, burning regimes or herbivory could be driving woody encroachment, but are unlikely to be the explanation of this continent-wide phenomenon.


Asunto(s)
Pradera , Árboles , Conservación de los Recursos Naturales , Ecosistema , Madera
20.
Glob Chang Biol ; 23(1): 256-268, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27151406

RESUMEN

The existence of fine-grain climate heterogeneity has prompted suggestions that species may be able to survive future climate change in pockets of suitable microclimate, termed 'microrefugia'. However, evidence for microrefugia is hindered by lack of understanding of how rates of warming vary across a landscape. Here, we present a model that is applied to provide fine-grained, multidecadal estimates of temperature change based on the underlying physical processes that influence microclimate. Weather station and remotely derived environmental data were used to construct physical variables that capture the effects of terrain, sea surface temperatures, altitude and surface albedo on local temperatures, which were then calibrated statistically to derive gridded estimates of temperature. We apply the model to the Lizard Peninsula, United Kingdom, to provide accurate (mean error = 1.21 °C; RMS error = 1.63 °C) hourly estimates of temperature at a resolution of 100 m for the period 1977-2014. We show that rates of warming vary across a landscape primarily due to long-term trends in weather conditions. Total warming varied from 0.87 to 1.16 °C, with the slowest rates of warming evident on north-east-facing slopes. This variation contributed to substantial spatial heterogeneity in trends in bioclimatic variables: for example, the change in the length of the frost-free season varied from +11 to -54 days and the increase in annual growing degree-days from 51 to 267 °C days. Spatial variation in warming was caused primarily by a decrease in daytime cloud cover with a resulting increase in received solar radiation, and secondarily by a decrease in the strength of westerly winds, which has amplified the effects on temperature of solar radiation on west-facing slopes. We emphasize the importance of multidecadal trends in weather conditions in determining spatial variation in rates of warming, suggesting that locations experiencing least warming may not remain consistent under future climate change.


Asunto(s)
Cambio Climático , Microclima , Altitud , Clima , Temperatura , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...