Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aging Cell ; 11(3): 418-27, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22268717

RESUMEN

Synaptic dysfunction is considered the primary substrate for the functional declines observed within the nervous system during age-related neurodegenerative disease. Dietary restriction (DR), which extends lifespan in numerous species, has been shown to have beneficial effects on many neurodegenerative disease models. Existing data sets suggest that the effects of DR during disease include the amelioration of synaptic dysfunction but evidence of the beneficial effects of diet on the synapse is lacking. Dynactin mutant flies have significant increases in mortality rates and exhibit progressive loss of motor function. Using a novel fly motor disease model, we demonstrate that mutant flies raised on a low calorie diet have enhanced motor function and improved survival compared to flies on a high calorie diet. Neurodegeneration in this model is characterized by an early impairment of neurotransmission that precedes the deterioration of neuromuscular junction (NMJ) morphology. In mutant flies, low calorie diet increases neurotransmission, but has little effect on morphology, supporting the hypothesis that enhanced neurotransmission contributes to the effects of diet on motor function. Importantly, the effects of diet on the synapse are not because of the reduction of mutant pathologies, but by the increased release of synaptic vesicles during activity. The generality of this effect is demonstrated by the observation that diet can also increase synaptic vesicle release at wild-type NMJs. These studies reveal a novel presynaptic mechanism of diet that may contribute to the improved vigor observed in mutant flies raised on low calorie diet.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Unión Neuromuscular/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Dieta , Modelos Animales de Enfermedad , Drosophila , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Complejo Dinactina , Proteínas Asociadas a Microtúbulos/genética , Análisis de Supervivencia , Vesículas Sinápticas/genética
2.
J Neurosci ; 29(17): 5443-55, 2009 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-19403812

RESUMEN

Microtubule-based transport of mitochondria into dendrites and axons is vital for sustaining neuronal function. Transport along microtubule tracks proceeds in a series of plus and minus end-directed movements that are facilitated by kinesin and dynein motors. How the opposing movements are controlled to achieve effective transport over large distances remains unclear. Previous studies showed that the conserved mitochondrial GTPase Miro is required for mitochondrial transport into axons and dendrites and serves as a Ca(2+) sensor that controls mitochondrial mobility. To directly examine Miro's significance for kinesin- and/or dynein-mediated mitochondrial motility, we live-imaged movements of GFP-tagged mitochondria in larval Drosophila motor axons upon genetic manipulations of Miro. Loss of Drosophila Miro (dMiro) reduced the effectiveness of both anterograde and retrograde mitochondrial transport by selectively impairing kinesin- or dynein-mediated movements, depending on the direction of net transport. Net anterogradely transported mitochondria exhibited reduced kinesin- but normal dynein-mediated movements. Net retrogradely transported mitochondria exhibited much shorter dynein-mediated movements, whereas kinesin-mediated movements were minimally affected. In both cases, the duration of short stationary phases increased proportionally. Overexpression (OE) of dMiro also impaired the effectiveness of mitochondrial transport. Finally, loss and OE of dMiro altered the length of mitochondria in axons through a mechanistically separate pathway. We suggest that dMiro promotes effective antero- and retrograde mitochondrial transport by extending the processivity of kinesin and dynein motors according to a mitochondrion's programmed direction of transport.


Asunto(s)
Transporte Axonal/fisiología , Axones/fisiología , Proteínas de Drosophila/fisiología , Mitocondrias/fisiología , Proteínas Mitocondriales/fisiología , Proteínas de Unión al GTP rho/fisiología , Animales , Animales Modificados Genéticamente , Drosophila , Dineínas/fisiología , Cinesinas/antagonistas & inhibidores , Cinesinas/fisiología
3.
Neuron ; 47(3): 379-93, 2005 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-16055062

RESUMEN

We have identified EMS-induced mutations in Drosophila Miro (dMiro), an atypical mitochondrial GTPase that is orthologous to human Miro (hMiro). Mutant dmiro animals exhibit defects in locomotion and die prematurely. Mitochondria in dmiro mutant muscles and neurons are abnormally distributed. Instead of being transported into axons and dendrites, mitochondria accumulate in parallel rows in neuronal somata. Mutant neuromuscular junctions (NMJs) lack presynaptic mitochondria, but neurotransmitter release and acute Ca2+ buffering is only impaired during prolonged stimulation. Neuronal, but not muscular, expression of dMiro in dmiro mutants restored viability, transport of mitochondria to NMJs, the structure of synaptic boutons, the organization of presynaptic microtubules, and the size of postsynaptic muscles. In addition, gain of dMiro function causes an abnormal accumulation of mitochondria in distal synaptic boutons of NMJs. Together, our findings suggest that dMiro is required for controlling anterograde transport of mitochondria and their proper distribution within nerve terminals.


Asunto(s)
Transporte Axonal/fisiología , Proteínas de Drosophila/fisiología , Drosophila/fisiología , Mitocondrias/fisiología , Sinapsis/fisiología , Proteínas de Unión al GTP rho/fisiología , Animales , Células COS , Calcio/metabolismo , Chlorocebus aethiops , Drosophila/genética , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Homeostasis , Larva , Mitocondrias/enzimología , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Actividad Motora/fisiología , Neuronas Motoras/metabolismo , Músculos/ultraestructura , Mutación , Terminaciones Nerviosas/metabolismo , Unión Neuromuscular/fisiología , Neuronas/ultraestructura , Terminales Presinápticos/ultraestructura , Vesículas Transportadoras/fisiología , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
4.
J Neurosci ; 24(16): 3964-73, 2004 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-15102912

RESUMEN

The N-ethylmaleimide-sensitive factor (NSF) and soluble NSF attachment protein (SNAP) are cytosolic factors that promote vesicle fusion with a target membrane in both the constitutive and regulated secretory pathways. NSF and SNAP are thought to function by catalyzing the disassembly of a SNAP receptor (SNARE) complex consisting of membrane proteins of the secretory vesicle and target membrane. Although studies of NSF function have provided strong support for this model, the precise biochemical role of SNAP remains controversial. To further explore the function of SNAP, we have used mutational and transgenic approaches in Drosophila to investigate the effect of altered SNAP dosage on neurotransmitter release and SNARE complex metabolism. Our results indicate that reduced SNAP activity results in diminished neurotransmitter release and accumulation of a neural SNARE complex. Increased SNAP dosage results in defective synapse formation and a variety of tissue morphological defects without detectably altering the abundance of neural SNARE complexes. The SNAP overexpression phenotypes are enhanced by mutations in other secretory components and are at least partially overcome by co-overexpression of NSF, suggesting that these phenotypes derive from a specific perturbation of the secretory pathway. Our results indicate that SNAP promotes neurotransmitter release and SNARE complex disassembly but inhibits secretion when present at high abundance relative to NSF.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neurotransmisores/metabolismo , Proteínas de Transporte Vesicular , Alelos , Animales , Animales Modificados Genéticamente , Análisis Mutacional de ADN , Drosophila , Dosificación de Gen , Expresión Génica , Genes Letales , Genes Recesivos , Prueba de Complementación Genética , Pruebas Genéticas , Larva , Sustancias Macromoleculares , Fusión de Membrana/fisiología , Mutación , Proteínas Sensibles a N-Etilmaleimida , Unión Neuromuscular/metabolismo , Fenotipo , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Transporte de Proteínas/genética , Proteínas SNARE , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida , Sinapsis/metabolismo , Sinapsis/ultraestructura
5.
J Neurosci ; 24(10): 2496-505, 2004 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-15014125

RESUMEN

Membrane-bound organelles such as mitochondria and the endoplasmic reticulum play an important role in neuronal Ca(2+) homeostasis. Synaptic vesicles (SVs), the organelles responsible for exocytosis of neurotransmitters, occupy more of the volume of presynaptic nerve terminals than any other organelle and, under some conditions, can accumulate Ca(2+). They are also closely associated with voltage-gated Ca(2+) channels (VGCCs) that trigger transmitter release by admitting Ca(2+) into the nerve terminal in response to action potentials (APs). We tested the hypothesis that SVs can modulate Ca(2+) signals in the presynaptic terminal. This has been a difficult question to address because neither pharmacological nor genetic approaches to block Ca(2+) permeation of the SV membrane have been available. To investigate the possible role of SVs in Ca(2+) regulation, we used imaging techniques to compare Ca(2+) dynamics in motor nerve terminals before and after depletion of SVs. We used the temperature-sensitive Drosophila dynamin mutant shibire, in which SVs can be eliminated by stimulation. There was no difference in the amplitude or time course of Ca(2+) responses during high-frequency trains of APs, or single APs, in individual presynaptic boutons before and after depletion of SVs. SVs have a limited role, if any, in the rapid sequestration of Ca(2+) within the neuronal cytosol or the synaptic microdomain. We also conclude that SVs are not important for regulation of synaptic VGCCs.


Asunto(s)
Calcio/metabolismo , Drosophila melanogaster/fisiología , Terminales Presinápticos/metabolismo , Vesículas Sinápticas/metabolismo , Potenciales de Acción/fisiología , Animales , Conducta Animal/fisiología , Señalización del Calcio/fisiología , Drosophila melanogaster/genética , Estimulación Eléctrica , Colorantes Fluorescentes , Larva/fisiología , Actividad Motora/fisiología , Neuronas Motoras/metabolismo , Mutación , Compuestos Orgánicos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA