Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nat Prod ; 86(4): 1061-1073, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37043739

RESUMEN

Botanical natural products have been widely consumed for their purported usefulness against COVID-19. Here, six botanical species from multiple sources and 173 isolated natural product compounds were screened for blockade of wild-type (WT) SARS-CoV-2 infection in human 293T epithelial cells overexpressing ACE-2 and TMPRSS2 protease (293TAT). Antiviral activity was demonstrated by an extract from Stephania tetrandra. Extract fractionation, liquid chromatography-mass spectrometry (LC-MS), antiviral assays, and computational analyses revealed that the alkaloid fraction and purified alkaloids tetrandrine, fangchinoline, and cepharanthine inhibited WT SARS-CoV-2 infection. The alkaloids and alkaloid fraction also inhibited the delta variant of concern but not WT SARS-CoV-2 in VeroAT cells. Membrane permeability assays demonstrate that the alkaloids are biologically available, although fangchinoline showed lower permeability than tetrandrine. At high concentrations, the extract, alkaloid fractions, and pure alkaloids induced phospholipidosis in 293TAT cells and less so in VeroAT cells. Gene expression profiling during virus infection suggested that alkaloid fraction and tetrandrine displayed similar effects on cellular gene expression and pathways, while fangchinoline showed distinct effects on cells. Our study demonstrates a multifaceted approach to systematically investigate the diverse activities conferred by complex botanical mixtures, their cell-context specificity, and their pleiotropic effects on biological systems.


Asunto(s)
Alcaloides , Antineoplásicos , Bencilisoquinolinas , COVID-19 , Stephania tetrandra , Stephania , Humanos , Stephania tetrandra/química , SARS-CoV-2 , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/química , Alcaloides/farmacología , Alcaloides/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antivirales/farmacología , Stephania/química
2.
J Nat Prod ; 85(11): 2682-2686, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36343012

RESUMEN

Boron-containing compounds are commonly used in synthetic chemistry and are known to play important roles in biology. Despite the widespread relevance of boronated compounds, there have been limited methods to discover, characterize, and study them. Here, we describe the use of 11B NMR, including 1H-11B HMBC, for the isolation and characterization of the boron-containing natural product diadenosine borate. Utilizing synthetic standards, we optimized coupling parameters for 1H-11B HMBC experiments to allow for the analysis of small quantities (∼1 mg) of boron-containing compounds. This work can facilitate the broader application of 11B NMR to the study of boron in a range of applications, from synthetic chemistry to the role of boron in naturally occurring systems.


Asunto(s)
Adenosina , Productos Biológicos , Boratos , Espectroscopía de Resonancia Magnética , Boratos/química , Adenosina/química , Productos Biológicos/química
3.
Proc Natl Acad Sci U S A ; 119(49): e2208458119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36449542

RESUMEN

Determining mechanism of action (MOA) is one of the biggest challenges in natural products discovery. Here, we report a comprehensive platform that uses Similarity Network Fusion (SNF) to improve MOA predictions by integrating data from the cytological profiling high-content imaging platform and the gene expression platform Functional Signature Ontology, and pairs these data with untargeted metabolomics analysis for de novo bioactive compound discovery. The predictive value of the integrative approach was assessed using a library of target-annotated small molecules as benchmarks. Using Kolmogorov-Smirnov (KS) tests to compare in-class to out-of-class similarity, we found that SNF retains the ability to identify significant in-class similarity across a diverse set of target classes, and could find target classes not detectable in either platform alone. This confirmed that integration of expression-based and image-based phenotypes can accurately report on MOA. Furthermore, we integrated untargeted metabolomics of complex natural product fractions with the SNF network to map biological signatures to specific metabolites. Three examples are presented where SNF coupled with metabolomics was used to directly functionally characterize natural products and accelerate identification of bioactive metabolites, including the discovery of the azoxy-containing biaryl compounds parkamycins A and B. Our results support SNF integration of multiple phenotypic screening approaches along with untargeted metabolomics as a powerful approach for advancing natural products drug discovery.


Asunto(s)
Productos Biológicos , Productos Biológicos/farmacología , Metabolómica , Benchmarking , Fusión Génica , Biblioteca de Genes
4.
Chem Rev ; 122(18): 14815-14841, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36006409

RESUMEN

Biosynthetic mechanisms of natural products primarily depend on systems of protein catalysts. However, within the field of biosynthesis, there are cases in which the inherent chemical reactivity of metabolic intermediates and substrates evades the involvement of enzymes. These reactions are difficult to characterize based on their reactivity and occlusion within the milieu of the cellular environment. As we continue to build a strong foundation for how microbes and higher organisms produce natural products, therein lies a need for understanding how protein independent or nonenzymatic biosynthetic steps can occur. We have classified such reactions into four categories: intramolecular, multicomponent, tailoring, and light-induced reactions. Intramolecular reactions is one of the most well studied in the context of biomimetic synthesis, consisting of cyclizations and cycloadditions due to the innate reactivity of the intermediates. There are two subclasses that make up multicomponent reactions, one being homologous multicomponent reactions which results in dimeric and pseudodimeric natural products, and the other being heterologous multicomponent reactions, where two or more precursors from independent biosynthetic pathways undergo a variety of reactions to produce the mature natural product. The third type of reaction discussed are tailoring reactions, where postmodifications occur on the natural products after the biosynthetic machinery is completed. The last category consists of light-induced reactions involving ecologically relevant UV light rather than high intensity UV irradiation that is traditionally used in synthetic chemistry. This review will cover recent nonenzymatic biosynthetic mechanisms and include sources for those reviewed previously.


Asunto(s)
Productos Biológicos , Productos Biológicos/química , Vías Biosintéticas , Catálisis , Ciclización , Reacción de Cicloadición
5.
Angew Chem Int Ed Engl ; 61(38): e202208029, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-35881566

RESUMEN

We report the first total synthesis of an antimycobacterial natural product oxazinin A that takes advantage of a multi-component cascade reaction of anthranilic acid and a precursor polyketide containing an aldehyde. The route utilized for the synthesis of the pseudodimeric oxazinin A validates a previously proposed biosynthetic mechanism, invoking a non-enzymatic pathway to the complex molecule. We found a 76 : 10 : 9 : 5 ratio of oxazinin diastereomers from the synthetic cascade, which is an identical match to that found in the fermentation media from the fungus Eurotiomycetes 110162. Further investigation of the non-enzymatic formation of oxazinin A using 1 H-15 N HMBC NMR spectroscopy allowed for a plausible determination of the stepwise mechanism. The developed route is highly amenable for the synthesis of diverse sets of analogs around the oxazinin scaffold to study structure-activity relationships (SAR).


Asunto(s)
Productos Biológicos , Biomimética , Productos Biológicos/química , Hongos/química , Compuestos Heterocíclicos de 4 o más Anillos
6.
Org Lett ; 24(17): 3161-3166, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35472262

RESUMEN

Natural products are biologically relevant metabolites exploited for biomedicine and biotechnology. The frequent reisolation of known natural products questions whether existing discovery models are still capable of identifying novel compounds. As innovative NMR-based screening techniques can help overcome these challenges, we applied a phase cycling composite pulse sequence to 11B NMR experiments to enhance their sensitivity to screen libraries for novel boron-containing molecules. Aplasmomycin and autoinducer-2 were detected in crude and enhanced microbial fractions, via their boron signals, as proof of concept. Subsequently, a screen of 21 crude plant and 50 crude marine microbial extracts were chosen at random and analyzed with the optimized 11B experiment for feasibility as a high throughput discovery method. Eight of the plant samples and 13 of the microbial samples were identified as boron-containing, suggesting that there is a higher presence of boron metabolites available from natural sources than previously known due to a lack of appropriate discovery methods. As a result, we believe that this optimized 11B NMR experiment can serve as a robust method for quick and facile discovery of novel boron-containing metabolites from a variety of natural sources.


Asunto(s)
Productos Biológicos , Productos Biológicos/química , Boro , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética
7.
Eur J Med Chem ; 236: 114245, 2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35421661

RESUMEN

Design and synthesis of library of compounds around the antibiotic natural product hunanamycin A scaffold and their biological evaluation are disclosed here. These efforts resulted in identification of a lead compound 36, which is a structurally simplified analogue of original hunanamycin A with impressive activity against Salmonella enterica and possesses other druggable properties. In addition, no acute oral toxicity was observed for compound 36 in Swiss albino mice dosed up to 2 g/kg. It has the potential to be developed for the treatment of food infections caused by Salmonella.


Asunto(s)
Productos Biológicos , Salmonella enterica , Animales , Antibacterianos/farmacología , Productos Biológicos/farmacología , Ratones , Quinoxalinas , Salmonella
8.
PLoS One ; 16(12): e0261230, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34919584

RESUMEN

The systematic screening of asymptomatic and pre-symptomatic individuals is a powerful tool for controlling community transmission of infectious disease on college campuses. Faced with a paucity of testing in the beginning of the COVID-19 pandemic, many universities developed molecular diagnostic laboratories focused on SARS-CoV-2 diagnostic testing on campus and in their broader communities. We established the UC Santa Cruz Molecular Diagnostic Lab in early April 2020 and began testing clinical samples just five weeks later. Using a clinically-validated laboratory developed test (LDT) that avoided supply chain constraints, an automated sample pooling and processing workflow, and a custom laboratory information management system (LIMS), we expanded testing from a handful of clinical samples per day to thousands per day with the testing capacity to screen our entire campus population twice per week. In this report we describe the technical, logistical, and regulatory processes that enabled our pop-up lab to scale testing and reporting capacity to thousands of tests per day.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Técnicas de Laboratorio Clínico/métodos , Pruebas Diagnósticas de Rutina/métodos , Tamizaje Masivo/métodos , Pandemias/prevención & control , Programas de Detección Diagnóstica , Humanos , Universidades
9.
Molecules ; 26(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34361735

RESUMEN

Biofilms, the predominant growth mode of microorganisms, pose a significant risk to human health. The protective biofilm matrix, typically composed of exopolysaccharides, proteins, nucleic acids, and lipids, combined with biofilm-grown bacteria's heterogenous physiology, leads to enhanced fitness and tolerance to traditional methods for treatment. There is a need to identify biofilm inhibitors using diverse approaches and targeting different stages of biofilm formation. This review discusses discovery strategies that successfully identified a wide range of inhibitors and the processes used to characterize their inhibition mechanism and further improvement. Additionally, we examine the structure-activity relationship (SAR) for some of these inhibitors to optimize inhibitor activity.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Matriz Extracelular de Sustancias Poliméricas/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Antibacterianos/biosíntesis , Antibacterianos/síntesis química , Antibacterianos/aislamiento & purificación , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , GMP Cíclico/antagonistas & inhibidores , GMP Cíclico/química , GMP Cíclico/metabolismo , Diseño de Fármacos , Descubrimiento de Drogas , Farmacorresistencia Bacteriana/efectos de los fármacos , Matriz Extracelular de Sustancias Poliméricas/química , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Gramnegativas/patogenicidad , Bacterias Grampositivas/crecimiento & desarrollo , Bacterias Grampositivas/patogenicidad , Lípidos/antagonistas & inhibidores , Lípidos/química , Pruebas de Sensibilidad Microbiana , Ácidos Nucleicos/antagonistas & inhibidores , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Polisacáridos Bacterianos/antagonistas & inhibidores , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/aislamiento & purificación , Relación Estructura-Actividad
10.
Microbiol Resour Announc ; 10(16)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888496

RESUMEN

Actinobacteria represent a large source of diverse bioactive compounds of medical and economic importance. Here, we report the 8.8-Mb draft genome of the marine bacterium Streptomyces spinoverrucosus SNB-032. Bioinformatic sequence analysis proved similarities to known Streptomyces strains and revealed the capacity for the production of various secondary metabolites.

11.
Cell Host Microbe ; 28(1): 41-53.e8, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32521224

RESUMEN

The gut-brain axis is crucial to microbial-host interactions. The neurotransmitter serotonin is primarily synthesized in the gastrointestinal (GI) tract, where it is secreted into the lumen and subsequently removed by the serotonin transporter, SERT. Here, we show that serotonin decreases virulence gene expression by enterohemorrhagic E. coli (EHEC) and Citrobacter rodentium, a murine model for EHEC. The membrane-bound histidine sensor kinase, CpxA, is a bacterial serotonin receptor. Serotonin induces dephosphorylation of CpxA, which inactivates the transcriptional factor CpxR controlling expression of virulence genes, notably those within the locus of enterocyte effacement (LEE). Increasing intestinal serotonin by genetically or pharmacologically inhibiting SERT decreases LEE expression and reduces C. rodentium loads. Conversely, inhibiting serotonin synthesis increases pathogenesis and decreases host survival. As other enteric bacteria contain CpxA, this signal exploitation may be engaged by other pathogens. Additionally, repurposing serotonin agonists to inhibit CpxA may represent a potential therapeutic intervention for enteric bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citrobacter rodentium/patogenicidad , Escherichia coli Enterohemorrágica/patogenicidad , Proteínas Quinasas/metabolismo , Serotonina/fisiología , Animales , Proteínas Bacterianas/genética , Citrobacter rodentium/genética , Modelos Animales de Enfermedad , Infecciones por Enterobacteriaceae/microbiología , Escherichia coli Enterohemorrágica/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Femenino , Tracto Gastrointestinal/microbiología , Regulación Bacteriana de la Expresión Génica , Células HeLa , Interacciones Huésped-Patógeno/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Quinasas/genética , Antagonistas de la Serotonina , Transcriptoma , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
13.
Org Lett ; 22(4): 1516-1519, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32017580

RESUMEN

Pyonitrins A-D are recently isolated natural products from the insect-associated Pseudomonas protegens strain, which were isolated from complex fractions that exhibited antifungal activity via an in vivo murine candidiasis assay. Genomic studies of Pseudomonas protegens suggested that pyonitrins A-D are formed via a spontaneous nonenzymatic reaction between biosynthetic intermediates of two well-known natural products pyochelin and pyrrolnitrin. Herein we have accomplished the first biomimetic total synthesis of pyonitrins A-D in three steps and studied the nonenzymatic formation of the pyonitrins using 15N NMR spectroscopy.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Pseudomonas/química , Tiazoles/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Estereoisomerismo , Tiazoles/síntesis química , Tiazoles/química
14.
FASEB J ; 34(1): 41-65, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914647

RESUMEN

While great interest in health effects of natural product (NP) including dietary supplements and foods persists, promising preclinical NP research is not consistently translating into actionable clinical trial (CT) outcomes. Generally considered the gold standard for assessing safety and efficacy, CTs, especially phase III CTs, are costly and require rigorous planning to optimize the value of the information obtained. More effective bridging from NP research to CT was the goal of a September, 2018 transdisciplinary workshop. Participants emphasized that replicability and likelihood of successful translation depend on rigor in experimental design, interpretation, and reporting across the continuum of NP research. Discussions spanned good practices for NP characterization and quality control; use and interpretation of models (computational through in vivo) with strong clinical predictive validity; controls for experimental artefacts, especially for in vitro interrogation of bioactivity and mechanisms of action; rigorous assessment and interpretation of prior research; transparency in all reporting; and prioritization of research questions. Natural product clinical trials prioritized based on rigorous, convergent supporting data and current public health needs are most likely to be informative and ultimately affect public health. Thoughtful, coordinated implementation of these practices should enhance the knowledge gained from future NP research.


Asunto(s)
Productos Biológicos/farmacología , Investigación Biomédica Traslacional/normas , Animales , Evaluación Preclínica de Medicamentos , Etnobotánica , Humanos
15.
Cell Chem Biol ; 26(10): 1380-1392.e6, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31378711

RESUMEN

Gene expression signature-based inference of functional connectivity within and between genetic perturbations, chemical perturbations, and disease status can lead to the development of actionable hypotheses for gene function, chemical modes of action, and disease treatment strategies. Here, we report a FuSiOn-based genome-wide integration of hypomorphic cellular phenotypes that enables functional annotation of gene network topology, assignment of mechanistic hypotheses to genes of unknown function, and detection of cooperativity among cell regulatory systems. Dovetailing genetic perturbation data with chemical perturbation phenotypes allowed simultaneous generation of mechanism of action hypotheses for thousands of uncharacterized natural products fractions (NPFs). The predicted mechanism of actions span a broad spectrum of cellular mechanisms, many of which are not currently recognized as "druggable." To enable use of FuSiOn as a hypothesis generation resource, all associations and analyses are available within an open source web-based GUI (http://fusion.yuhs.ac).


Asunto(s)
Productos Biológicos/farmacología , Descubrimiento de Drogas , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Programas Informáticos , Productos Biológicos/química , Células HCT116 , Células HeLa , Humanos , Fenotipo , Transcriptoma , Células Tumorales Cultivadas
16.
Nat Prod Rep ; 36(1): 35-107, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30003207

RESUMEN

Covering: up to 2018With contributions from the global natural product (NP) research community, and continuing the Raw Data Initiative, this review collects a comprehensive demonstration of the immense scientific value of disseminating raw nuclear magnetic resonance (NMR) data, independently of, and in parallel with, classical publishing outlets. A comprehensive compilation of historic to present-day cases as well as contemporary and future applications show that addressing the urgent need for a repository of publicly accessible raw NMR data has the potential to transform natural products (NPs) and associated fields of chemical and biomedical research. The call for advancing open sharing mechanisms for raw data is intended to enhance the transparency of experimental protocols, augment the reproducibility of reported outcomes, including biological studies, become a regular component of responsible research, and thereby enrich the integrity of NP research and related fields.


Asunto(s)
Productos Biológicos/química , Espectroscopía de Resonancia Magnética/métodos , Conformación Molecular , Reproducibilidad de los Resultados
18.
J Gen Physiol ; 150(12): 1747-1757, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30352794

RESUMEN

Modulators of insulin secretion could be used to treat diabetes and as tools to investigate ß cell regulatory pathways in order to increase our understanding of pancreatic islet function. Toward this goal, we previously used an insulin-linked luciferase that is cosecreted with insulin in MIN6 ß cells to perform a high-throughput screen of natural products for chronic effects on glucose-stimulated insulin secretion. In this study, using multiple phenotypic analyses, we found that one of the top natural product hits, chromomycin A2 (CMA2), potently inhibited insulin secretion by at least three potential mechanisms: disruption of Wnt signaling, interference of ß cell gene expression, and partial suppression of Ca2+ influx. Chronic treatment with CMA2 largely ablated glucose-stimulated insulin secretion even after washout, but it did not inhibit glucose-stimulated generation of ATP or Ca2+ influx. However, by using the KATP channel opener diazoxide, we uncovered defects in depolarization-induced Ca2+ influx that may contribute to the suppressed secretory response. Glucose-responsive ERK1/2 and S6 phosphorylation were also disrupted by chronic CMA2 treatment. By querying the FUSION bioinformatic database, we revealed that the phenotypic effects of CMA2 cluster with a number of Wnt-GSK3 pathway-related genes. Furthermore, CMA2 consistently decreased GSK3ß phosphorylation and suppressed activation of a ß-catenin activity reporter. CMA2 and a related compound, mithramycin, are known to have DNA interaction properties, possibly abrogating transcription factor binding to critical ß cell gene promoters. We observed that CMA2 but not mithramycin suppressed expression of PDX1 and UCN3. However, neither expression of INSI/II nor insulin content was affected by chronic CMA2. The mechanisms of CMA2-induced insulin secretion defects may involve components both proximal and distal to Ca2+ influx. Therefore, CMA2 is an example of a chemical that can simultaneously disrupt ß cell function through both noncytotoxic and cytotoxic mechanisms. Future therapeutic applications of CMA2 and similar aureolic acid analogues should consider their potential effects on pancreatic islet function.


Asunto(s)
Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Plicamicina/análogos & derivados , Animales , Línea Celular , Expresión Génica/efectos de los fármacos , Humanos , Ratones , Plicamicina/aislamiento & purificación , Plicamicina/farmacología , Cultivo Primario de Células , Transducción de Señal/efectos de los fármacos , Streptomyces/química
19.
Cancer Res ; 78(21): 6196-6208, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30185546

RESUMEN

Cancer testis antigens (CTA) are expressed in testis and placenta and anomalously activated in a variety of tumors. The mechanistic contribution of CTAs to neoplastic phenotypes remains largely unknown. Using a chemigenomics approach, we find that the CTA HORMAD1 correlates with resistance to the mitochondrial complex I inhibitor piericidin A in non-small cell lung cancer (NSCLC). Resistance was due to a reductive intracellular environment that attenuated the accumulation of free radicals. In human lung adenocarcinoma (LUAD) tumors, patients expressing high HORMAD1 exhibited elevated mutational burden and reduced survival. HORMAD1 tumors were enriched for genes essential for homologous recombination (HR), and HORMAD1 promoted RAD51-filament formation, but not DNA resection, during HR. Accordingly, HORMAD1 loss enhanced sensitivity to γ-irradiation and PARP inhibition, and HORMAD1 depletion significantly reduced tumor growth in vivo These results suggest that HORMAD1 expression specifies a novel subtype of LUAD, which has adapted to mitigate DNA damage. In this setting, HORMAD1 could represent a direct target for intervention to enhance sensitivity to DNA-damaging agents or as an immunotherapeutic target in patients.Significance: This study uses a chemigenomics approach to demonstrate that anomalous expression of the CTA HORMAD1 specifies resistance to oxidative stress and promotes HR to support tumor cell survival in NSCLC. Cancer Res; 78(21); 6196-208. ©2018 AACR.


Asunto(s)
Adenocarcinoma del Pulmón/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Proteínas de Ciclo Celular/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/diagnóstico , Células A549 , Adenocarcinoma del Pulmón/metabolismo , Animales , Antígenos de Neoplasias/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Supervivencia Celular , Daño del ADN , Reparación del ADN , Femenino , Radicales Libres , Perfilación de la Expresión Génica , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Endogámicos NOD , Mutágenos , Trasplante de Neoplasias , Estrés Oxidativo , Pronóstico , Recombinación Genética
20.
Nat Commun ; 9(1): 2050, 2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29784984

RESUMEN

The originally published version of this Article contained an error in the spelling of the author Nathaniel W. Oswald, which was incorrectly given as Nathaniel W. Olswald. This has now been corrected in both the PDF and HTML versions of the Article.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...