Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(6): 067401, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36827575

RESUMEN

Real-world datasets characterized by discrete features are ubiquitous: from categorical surveys to clinical questionnaires, from unweighted networks to DNA sequences. Nevertheless, the most common unsupervised dimensional reduction methods are designed for continuous spaces, and their use for discrete spaces can lead to errors and biases. In this Letter we introduce an algorithm to infer the intrinsic dimension (ID) of datasets embedded in discrete spaces. We demonstrate its accuracy on benchmark datasets, and we apply it to analyze a metagenomic dataset for species fingerprinting, finding a surprisingly small ID, of order 2. This suggests that evolutive pressure acts on a low-dimensional manifold despite the high dimensionality of sequences' space.

2.
Patterns (N Y) ; 3(10): 100589, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36277821

RESUMEN

DADApy is a Python software package for analyzing and characterizing high-dimensional data manifolds. It provides methods for estimating the intrinsic dimension and the probability density, for performing density-based clustering, and for comparing different distance metrics. We review the main functionalities of the package and exemplify its usage in a synthetic dataset and in a real-world application. DADApy is freely available under the open-source Apache 2.0 license.

3.
JACS Au ; 1(8): 1217-1230, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34467360

RESUMEN

The pore-forming toxin cytolysin A (ClyA) is expressed as a large α-helical monomer that, upon interaction with membranes, undergoes a major conformational rearrangement into the protomer conformation, which then assembles into a cytolytic pore. Here, we investigate the folding kinetics of the ClyA monomer with single-molecule Förster resonance energy transfer spectroscopy in combination with microfluidic mixing, stopped-flow circular dichroism experiments, and molecular simulations. The complex folding process occurs over a broad range of time scales, from hundreds of nanoseconds to minutes. The very slow formation of the native state occurs from a rapidly formed and highly collapsed intermediate with large helical content and nonnative topology. Molecular dynamics simulations suggest pronounced non-native interactions as the origin of the slow escape from this deep trap in the free-energy surface, and a variational enhanced path-sampling approach enables a glimpse of the folding process that is supported by the experimental data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...