Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiome Res Rep ; 3(2): 20, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841412

RESUMEN

Cell culture is a powerful technique for the investigation of molecular mechanisms fundamental to health and disease in a diverse array of organisms. Cell lines offer several advantages, namely their simplistic approach and high degree of reproducibility. One field where cell culture has proven particularly useful is the study of the microbiome, where cell culture has led to the illumination of microbial influences on host immunity, nutrition, and physiology. Thus far, researchers have focused cell culture work predominantly on humans, but the growing field of insect microbiome research stands to benefit greatly from its application. Insects constitute one of Earth's most diverse and ancient life forms and, just as with humans, possess microbiomes with great significance to their health. Insects, which play critical roles in supporting food security and ecological stability, are facing increasing threats from agricultural intensification, climate change, and pesticide use. As the microbiome is closely tied to host health, gaining a more robust understanding is of increasing importance. In this review, we assert that the cultivation and utilization of insect gut cell lines in microbiome research will bridge critical knowledge gaps essential for informing insect management practices in a world under pressure.

2.
Cell Host Microbe ; 32(5): 768-778.e9, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38653241

RESUMEN

Microbiomes feature complex interactions between diverse bacteria and bacteriophages. Synthetic microbiomes offer a powerful way to study these interactions; however, a major challenge is obtaining a representative bacteriophage population during the bacterial isolation process. We demonstrate that colony isolation reliably excludes virulent viruses from sample sources with low virion-to-bacteria ratios such as feces, creating "virulent virus-free" controls. When the virulent dsDNA virome is reintroduced to a 73-strain synthetic gut microbiome in a bioreactor model of the human colon, virulent viruses target susceptible strains without significantly altering community structure or metabolism. In addition, we detected signals of prophage induction that associate with virulent predation. Overall, our findings indicate that dilution-based isolation methods generate synthetic gut microbiomes that are heavily depleted, if not devoid, of virulent viruses and that such viruses, if reintroduced, have a targeted effect on community assembly, metabolism, and prophage replication.


Asunto(s)
Bacterias , Bacteriófagos , Heces , Microbioma Gastrointestinal , Bacteriófagos/genética , Bacteriófagos/fisiología , Humanos , Heces/microbiología , Heces/virología , Bacterias/virología , Bacterias/genética , Profagos/genética , Profagos/fisiología , Viroma , Reactores Biológicos/microbiología , Reactores Biológicos/virología , Colon/microbiología , Colon/virología , Microbiota , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...