Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Genet Genomic Med ; 10(12): e2072, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36251442

RESUMEN

BACKGROUND: Some clinically important genetic variants are not easily evaluated with next-generation sequencing (NGS) methods due to technical challenges arising from high- similarity copies (e.g., PMS2, SMN1/SMN2, GBA1, HBA1/HBA2, CYP21A2), repetitive short sequences (e.g., ARX polyalanine repeats, FMR1 AGG interruptions in CGG repeats, CFTR poly-T/TG repeats), and other complexities (e.g., MSH2 Boland inversions). METHODS: We customized our NGS processes to detect the technically challenging variants mentioned above with adaptations including target enrichment and bioinformatic masking of similar sequences. Adaptations were validated with samples of known genotypes. RESULTS: Our adaptations provided high-sensitivity and high-specificity detection for most of the variants and provided a high-sensitivity primary assay to be followed with orthogonal disambiguation for the others. The sensitivity of the NGS adaptations was 100% for all of the technically challenging variants. Specificity was 100% for those in PMS2, GBA1, SMN1/SMN2, and HBA1/HBA2, and for the MSH2 Boland inversion; 97.8%-100% for CYP21A2 variants; and 85.7% for ARX polyalanine repeats. CONCLUSIONS: NGS assays can detect technically challenging variants when chemistries and bioinformatics are jointly refined. The adaptations described support a scalable, cost-effective path to identifying all clinically relevant variants within a single sample.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto , Hemoglobina Glucada , Proteína 2 Homóloga a MutS , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Genotipo , Esteroide 21-Hidroxilasa
2.
Mol Biol Evol ; 37(11): 3258-3266, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32520985

RESUMEN

The rate and spectrum of spontaneous mutations are critical parameters in basic and applied biology because they dictate the pace and character of genetic variation introduced into populations, which is a prerequisite for evolution. We use a mutation-accumulation approach to estimate mutation parameters from whole-genome sequence data from multiple genotypes from multiple populations of Daphnia magna, an ecological and evolutionary model system. We report extremely high base substitution mutation rates (µ-n,bs = 8.96 × 10-9/bp/generation [95% CI: 6.66-11.97 × 10-9/bp/generation] in the nuclear genome and µ-m,bs = 8.7 × 10-7/bp/generation [95% CI: 4.40-15.12 × 10-7/bp/generation] in the mtDNA), the highest of any eukaryote examined using this approach. Levels of intraspecific variation based on the range of estimates from the nine genotypes collected from three populations (Finland, Germany, and Israel) span 1 and 3 orders of magnitude, respectively, resulting in up to a ∼300-fold difference in rates among genomic partitions within the same lineage. In contrast, mutation spectra exhibit very consistent patterns across genotypes and populations, suggesting the mechanisms underlying the mutational process may be similar, even when the rates at which they occur differ. We discuss the implications of high levels of intraspecific variation in rates, the importance of estimating gene conversion rates using a mutation-accumulation approach, and the interacting factors influencing the evolution of mutation parameters. Our findings deepen our knowledge about mutation and provide both challenges to and support for current theories aimed at explaining the evolution of the mutation rate, as a trait, across taxa.


Asunto(s)
Daphnia/genética , Tasa de Mutación , Animales , Acumulación de Mutaciones , Secuenciación Completa del Genoma
3.
Philos Trans R Soc Lond B Biol Sci ; 375(1790): 20190173, 2020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31787045

RESUMEN

Understanding and quantifying the rates of change in the mitochondrial genome is a major component of many areas of biological inquiry, from phylogenetics to human health. A critical parameter in understanding rates of change is estimating the mitochondrial mutation rate (mtDNA MR). Although the first direct estimates of mtDNA MRs were reported almost 20 years ago, the number of estimates has not grown markedly since that time. This is largely owing to the challenges associated with time- and labour-intensive mutation accumulation (MA) experiments. But even MA experiments do not solve a major problem with estimating mtDNA MRs-the challenge of disentangling the role of mutation from other evolutionary forces acting within the cell. Now that it is widely understood that any newly generated mutant allele in the mitochondria will initially be at very low frequency (1/N, where N is the number of mtDNA molecules in the cell), the importance of understanding the effective population size (Ne) of the mtDNA and the size of genetic bottlenecks during gametogenesis and development has come into the spotlight. In addition to these factors regulating the role of genetic drift, advances in our understanding of mitochondrial replication and turnover allow us to more easily envision how natural selection within the cell might favour or purge mutations in multi-copy organellar genomes. Here, we review the unique features of the mitochondrial genome that pose a challenge for accurate MR estimation and discuss ways to overcome those challenges. Estimates of mtDNA MRs remain one of the most widely used parameters in biology, thus accurate quantification and a deeper understanding of how and why they may vary within and between individuals, populations and species is an important goal. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.


Asunto(s)
Flujo Genético , Genoma Mitocondrial , Mutación , Selección Genética
4.
Mol Biol Evol ; 36(9): 1942-1954, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31077327

RESUMEN

Microsatellite loci (tandem repeats of short nucleotide motifs) are highly abundant in eukaryotic genomes and often used as genetic markers because they can exhibit variation both within and between populations. Although widely recognized for their mutability and utility, the mutation rates of microsatellites have only been empirically estimated in a few species, and have rarely been compared across genotypes and populations within a species. Here, we investigate the dynamics of microsatellite mutation over long- and short-time periods by quantifying the starting abundance and mutation rates for microsatellites for six different genotypes of Daphnia magna, an aquatic microcrustacean, collected from three populations (Finland, Germany, and Israel). Using whole-genome sequences of these six starting genotypes, descendent mutation accumulation (MA) lines, and large population controls (non-MA lines), we find each genotype exhibits a distinctive initial microsatellite profile which clusters according to the population-of-origin. During the period of MA, we observe motif-specific, highly variable, and rapid microsatellite mutation rates across genotypes of D. magna, the average of which is order of magnitude greater than the recently reported rate observed in a single genotype of the congener, Daphnia pulex. In our experiment, genotypes with more microsatellites starting out exhibit greater losses and those with fewer microsatellites starting out exhibit greater gains-a context-dependent mutation bias that has not been reported previously. We discuss how genotype-specific mutation rates and spectra, in conjunction with evolutionary forces, can shape both the differential accumulation of repeat content in the genome and the evolution of mutation rates.


Asunto(s)
Daphnia/genética , Variación Genética , Repeticiones de Microsatélite , Tasa de Mutación , Animales , Femenino , Acumulación de Mutaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...