Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Interferon Cytokine Res ; 44(1): 37-42, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37934469

RESUMEN

Interleukin 18 (IL-18) is a key cytokine involved in the activation of T and NK cells, which are major effector cells in tumor killing. However, recombinant IL-18 showed limited efficacy in clinical trials. A recent study showed the lack of efficacy was largely due to the existence of IL-18BP, a soluble decoy receptor for IL-18. It was shown that engineered IL-18 variants that maintained pathway activation, but avoided IL-18BP binding, could exert potent antitumor effects. In this study, we demonstrated an alternative strategy to activate IL-18 signaling through direct receptor dimerization. These results provide evidences that the IL-18 pathway can be activated by directly bridging the receptors and, therefore, bypassing the IL-18BP-mediated inhibition.


Asunto(s)
Interleucina-18 , Transducción de Señal , Dimerización , Citocinas/metabolismo , Unión Proteica
2.
Cell Res ; 31(10): 1043-1044, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34341491
3.
Elife ; 102021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34085925

RESUMEN

Defective autophagy is strongly associated with chronic inflammation. Loss-of-function of the core autophagy gene Atg16l1 increases risk for Crohn's disease in part by enhancing innate immunity through myeloid cells such as macrophages. However, autophagy is also recognized as a mechanism for clearance of certain intracellular pathogens. These divergent observations prompted a re-evaluation of ATG16L1 in innate antimicrobial immunity. In this study, we found that loss of Atg16l1 in myeloid cells enhanced the killing of virulent Shigella flexneri (S.flexneri), a clinically relevant enteric bacterium that resides within the cytosol by escaping from membrane-bound compartments. Quantitative multiplexed proteomics of murine bone marrow-derived macrophages revealed that ATG16L1 deficiency significantly upregulated proteins involved in the glutathione-mediated antioxidant response to compensate for elevated oxidative stress, which simultaneously promoted S.flexneri killing. Consistent with this, myeloid-specific deletion of Atg16l1 in mice accelerated bacterial clearance in vitro and in vivo. Pharmacological induction of oxidative stress through suppression of cysteine import enhanced microbial clearance by macrophages. Conversely, antioxidant treatment of macrophages permitted S.flexneri proliferation. These findings demonstrate that control of oxidative stress by ATG16L1 and autophagy regulates antimicrobial immunity against intracellular pathogens.


Asunto(s)
Proteínas Relacionadas con la Autofagia/deficiencia , Autofagia , Disentería Bacilar/microbiología , Inmunidad Innata , Macrófagos/microbiología , Estrés Oxidativo , Proteoma , Proteómica , Shigella flexneri/patogenicidad , Animales , Proteínas Relacionadas con la Autofagia/genética , Células Cultivadas , Modelos Animales de Enfermedad , Disentería Bacilar/inmunología , Disentería Bacilar/metabolismo , Interacciones Huésped-Patógeno , Mediadores de Inflamación/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Viabilidad Microbiana , Shigella flexneri/inmunología , Shigella flexneri/metabolismo , Virulencia
4.
Cell Chem Biol ; 27(11): 1441-1451.e7, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-32726587

RESUMEN

Protein-protein interactions (PPIs) govern intracellular life, and identification of PPI inhibitors is challenging. Roadblocks in assay development stemming from weak binding affinities of natural PPIs impede progress in this field. We postulated that enhancing binding affinity of natural PPIs via protein engineering will aid assay development and hit discovery. This proof-of-principle study targets PPI between linear ubiquitin chains and NEMO UBAN domain, which activates NF-κB signaling. Using phage display, we generated ubiquitin variants that bind to the functional UBAN epitope with high affinity, act as competitive inhibitors, and structurally maintain the existing PPI interface. When utilized in assay development, variants enable generation of robust cell-based assays for chemical screening. Top compounds identified using this approach directly bind to UBAN and dampen NF-κB signaling. This study illustrates advantages of integrating protein engineering and chemical screening in hit identification, a development that we anticipate will have wide application in drug discovery.


Asunto(s)
Productos Biológicos/farmacología , Descubrimiento de Drogas , FN-kappa B/antagonistas & inhibidores , Ingeniería de Proteínas , Ubiquitina/antagonistas & inhibidores , Productos Biológicos/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Humanos , Estructura Molecular , FN-kappa B/química , FN-kappa B/metabolismo , Unión Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Ubiquitina/química , Ubiquitina/metabolismo
5.
J Exp Med ; 217(7)2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32357367

RESUMEN

Myeloid cells play critical and diverse roles in mammalian physiology, including tissue development and repair, innate defense against pathogens, and generation of adaptive immunity. As cells that show prolonged recruitment to sites of injury or pathology, myeloid cells represent therapeutic targets for a broad range of diseases. However, few approaches have been developed for gene editing of these cell types, likely owing to their sensitivity to foreign genetic material or virus-based manipulation. Here we describe optimized strategies for gene disruption in primary myeloid cells of human and murine origin. Using nucleofection-based delivery of Cas9-ribonuclear proteins (RNPs), we achieved near population-level genetic knockout of single and multiple targets in a range of cell types without selection or enrichment. Importantly, we show that cellular fitness and response to immunological stimuli is not significantly impacted by the gene editing process. This provides a significant advance in the study of myeloid cell biology, thus enabling pathway discovery and drug target validation across species in the field of innate immunity.


Asunto(s)
Sistemas CRISPR-Cas/genética , Técnicas de Inactivación de Genes , Técnicas de Transferencia de Gen , Células Mieloides/metabolismo , Animales , Células Cultivadas , Células Dendríticas/metabolismo , Eliminación de Gen , Edición Génica , Ingeniería Genética , Genoma , Humanos , Macrófagos/metabolismo , Ratones , Monocitos/metabolismo , Fagocitosis , Fenotipo , ARN Guía de Kinetoplastida/genética , Ribonucleoproteínas/metabolismo , Virus/metabolismo
6.
Elife ; 82019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31287416

RESUMEN

RIPK1, RIPK3, ZBP1 and TRIF, the four mammalian proteins harboring RIP homotypic interaction motif (RHIM) domains, are key components of inflammatory signaling and programmed cell death. RHIM-domain protein activation is mediated by their oligomerization; however, mechanisms that promote a return to homeostasis remain unknown. Here we show that autophagy is critical for the turnover of all RHIM-domain proteins. Macrophages lacking the autophagy gene Atg16l1accumulated highly insoluble forms of RIPK1, RIPK3, TRIF and ZBP1. Defective autophagy enhanced necroptosis by Tumor necrosis factor (TNF) and Toll-like receptor (TLR) ligands. TNF-mediated necroptosis was mediated by RIPK1 kinase activity, whereas TLR3- or TLR4-mediated death was dependent on TRIF and RIPK3. Unexpectedly, combined deletion of Atg16l1 and Zbp1 accelerated LPS-mediated necroptosis and sepsis in mice. Thus, ZBP1 drives necroptosis in the absence of the RIPK1-RHIM, but suppresses this process when multiple RHIM-domain containing proteins accumulate. These findings identify autophagy as a central regulator of innate inflammation governed by RHIM-domain proteins.


Asunto(s)
Apoptosis , Autofagia , Inflamación/patología , Mapas de Interacción de Proteínas , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Células Cultivadas , Ratones , Unión Proteica , Multimerización de Proteína , Proteínas de Unión al ARN/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
7.
Cell Res ; 26(4): 499-510, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26964724

RESUMEN

Eukaryotic cells utilize the ubiquitin (Ub) system for maintaining a balanced functioning of cellular pathways. Although the Ub system is exclusive to eukaryotes, prokaryotic bacteria have developed an armory of Ub ligase enzymes that are capable of employing the Ub systems of various hosts, ranging from plant to animal cells. These enzymes have been acquired through the evolution and can be classified into three main classes, RING (really interesting new gene), HECT (homologous to the E6-AP carboxyl terminus) and NEL (novel E3 ligases). In this review we describe the roles played by different classes of bacterial Ub ligases in infection and pathogenicity. We also provide an overview of the different mechanisms by which bacteria mimic specific components of the host Ub system and outline the gaps in our current understanding of their functions. Additionally, we discuss approaches and experimental tools for validating this class of enzymes as potential novel antibacterial therapy targets.


Asunto(s)
Bacterias/enzimología , Bacterias/patogenicidad , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Animales , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Humanos , Transducción de Señal
8.
Sci Rep ; 6: 18940, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26743172

RESUMEN

Ubiquitin signalling regulates most aspects of cellular life, thus deregulation of ubiquitylation has been linked with a number of diseases. E3 ubiquitin ligases provide substrate selectivity in ubiquitylation cascades and are therefore considered to be attractive targets for developing therapeutic molecules. In contrast to established drug target classes, such as protein kinases, GPCRs, hormone receptors and ion channels, ubiquitin drug discovery is in its early stages. This is, in part, due to the complexity of the ubiquitylation pathways and the lack of robust quantitative technologies that allow high-throughput screening of inhibitors. Here we report the development of a Ubiquitin Ligase Profiling system, which is a novel and generic cellular technology designed to facilitate identification of selective inhibitors against RING type E3 ubiquitin ligases. Utilization of this system requires a single co-transfection of cells with assay vectors, thereby enabling readout of E3 ubiquitin ligase catalytic activity within the cellular environment. Therefore, our robust high-throughput screening platform offers novel opportunities for the development of inhibitors against this difficult-to-target E3 ligase enzyme class.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Vectores Genéticos/química , Ensayos Analíticos de Alto Rendimiento/métodos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Descubrimiento de Drogas , Regulación de la Expresión Génica , Genes Reporteros , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Nitrofuranos/farmacología , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sulfonas/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
9.
Curr Biol ; 25(17): 2254-9, 2015 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-26255844

RESUMEN

Disassembly of the Cdc45-MCM-GINS (CMG) DNA helicase, which unwinds the parental DNA duplex at eukaryotic replication forks, is the key regulated step during replication termination but is poorly understood. In budding yeast, the F-box protein Dia2 drives ubiquitylation of the CMG helicase at the end of replication, leading to a disassembly pathway that requires the Cdc48 segregase. The substrate-binding domain of Dia2 comprises leucine-rich repeats, but Dia2 also has a TPR domain at its amino terminus that interacts with the Ctf4 and Mrc1 subunits of the replisome progression complex, which assembles around the CMG helicase at replication forks. Previous studies suggested two disparate roles for the TPR domain of Dia2, either mediating replisome-specific degradation of Mrc1 and Ctf4 or else tethering SCF(Dia2) (SCF [Skp1/cullin/F-box protein]) to the replisome to increase its local concentration at replication forks. Here, we show that SCF(Dia2) does not mediate replisome-specific degradation of Mrc1 and Ctf4, either during normal S phase or in response to replication stress. Instead, the tethering of SCF(Dia2) to the replisome progression complex increases the efficiency of ubiquitylation of the Mcm7 subunit of CMG, both in vitro and in vivo. Correspondingly, loss of tethering reduces the efficiency of CMG disassembly in vivo and is synthetic lethal in combination with a disassembly-defective allele of CDC48. Residual ubiquitylation of Mcm7 in dia2-ΔTPR cells is still CMG specific, highlighting the complex regulation of the final stages of chromosome replication, about which much still remains to be learned.


Asunto(s)
Replicación del ADN , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Proteínas F-Box/genética , Componente 7 del Complejo de Mantenimiento de Minicromosoma/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas F-Box/metabolismo , Componente 7 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Fase S , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinación
10.
Science ; 346(6208): 1253596, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25342810

RESUMEN

Chromosome replication is initiated by a universal mechanism in eukaryotic cells, involving the assembly and activation at replication origins of the CMG (Cdc45-MCM-GINS) DNA helicase, which is essential for the progression of replication forks. Disassembly of CMG is likely to be a key regulated step at the end of chromosome replication, but the mechanism was unknown until now. Here we show that the ubiquitin ligase known as SCF(Dia2) promotes ubiquitylation of CMG during the final stages of chromosome replication in Saccharomyces cerevisiae. The Cdc48/p97 segregase then associates with ubiquitylated CMG, leading rapidly to helicase disassembly. These findings indicate that the end of chromosome replication in eukaryotes is controlled in a similarly complex fashion to the much-better-characterized initiation step.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas F-Box/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas F-Box/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética , Proteína que Contiene Valosina
11.
Curr Biol ; 19(22): 1943-9, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19913425

RESUMEN

Eukaryotic cells contain multiple versions of the E3 ubiquitin ligase known as the SCF (Skp1/cullin/F box), each of which is distinguished by a different F box protein that uses a domain at the carboxyl terminus to recognize substrates [1, 2]. The F box protein Dia2 is an important determinant of genome stability in budding yeast [3-5], but its mode of action is poorly understood. Here we show that SCF(Dia2) associates with the replisome progression complex (RPC) that assembles around the MCM2-7 helicase at DNA replication forks [6]. This interaction requires the RPC components Mrc1 and Ctf4, both of which associate with a tetratricopeptide repeat (TPR) domain located at the amino terminus of Dia2. Our data indicate that the TPR domain of Dia2 tethers SCF(Dia2) to the RPC, probably increasing the local concentration of the ligase at DNA replication forks. This regulation becomes important in cells that accumulate stalled DNA replication forks at protein-DNA barriers, perhaps aiding the interaction of SCF(Dia2) with key substrates. Our findings suggest that the amino-terminal domains of other F box proteins might also play an analogous regulatory role, controlling the localization of the cognate SCF complexes.


Asunto(s)
Replicación del ADN , Proteínas F-Box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Cartilla de ADN , Proteínas F-Box/química , Proteínas F-Box/genética , Citometría de Flujo , Genes Fúngicos , Inmunoprecipitación , Datos de Secuencia Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...