Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater Adv ; 10: 100315, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37193121

RESUMEN

The COVID-19 pandemic caused by the SARS-CoV-2 virus led to changes in the lifestyle and human behaviour, which resulted in different consumption patterns of some classes of pharmaceuticals including curative, symptom-relieving, and psychotropic drugs. The trends in the consumption of these compounds are related to their concentrations in wastewater systems, since incompletely metabolised drugs (or their metabolites back transformed into the parental form) may be detected and quantified by analytical methods. Pharmaceuticals are highly recalcitrant compounds and conventional activated sludge processes implemented in wastewater treatment plants (WWTP) are ineffective at degrading these substances. As a results, these compounds end up in waterways or accumulate in the sludge, being a serious concern given their potential effects on ecosystems and public health. Therefore, it is crucial to evaluate the presence of pharmaceuticals in water and sludge to assist in the search for more effective processes. In this work, eight pharmaceuticals from five therapeutic classes were analysed in wastewater and sludge samples collected in two WWTP located in the Northern Portugal, during the third COVID-19 epidemic wave in Portugal. The two WWTP demonstrated a similar pattern with respect to the concentration levels in that period. However, the drugs loads reaching each WWTP were dissimilar when normalising the concentrations to the inlet flow rate. Acetaminophen (ACET) was the compound detected at highest concentrations in aqueous samples of both WWTP (98. 516 µg L - 1 in WWTP2 and 123. 506 µg L - 1in WWTP1), indicating that this drug is extensively used without the need of a prescription, known of general public knowledge as an antipyretic and analgesic agent to treat pain and fever. The concentrations determined in the sludge samples were below 1.65 µg g - 1 in both WWTP, the highest value being found for azithromycin (AZT). This result may be justified by the physico-chemical characteristics of the compound that favour its adsorption to the sludge surface through ionic interactions. It was not possible to establish a clear relationship between the incidence of COVID-19 cases in the sewer catchment and the concentration of drugs detected in the same period. However, looking at the data obtained, the high incidence of COVID-19 in January 2021 is in line with the high concentration of drugs detected in the aqueous and sludge samples but prediction of drug load from viral load data was unfeasible.

2.
Food Chem ; 406: 135080, 2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-36462354

RESUMEN

Investigating the digestion of lipids is paramount for developing new lipid-based products. This work evaluated the gastrointestinal (GI) digestion of medium-chain fatty acids (MCFAs) rich lipids. The dynamic GI in vitro system was used to simulate gastric, duodenal, jejunal, and ileal GI tract portions. Results from the dynamic protocol were compared against static in vitro assays and GC analyses were conducted to assess the FA profile of FFA released during digestion. Caprylic and capric acids released during the gastric digestion of MCT oil varied from 61-63% and 36-38% of total esterified FA, respectively. Lauric acid was the most representative FFA released (31-54%) during the gastric digestion of coconut oil samples. It was observed that the gastric digestion phase plays a crucial role in the MCFA lipolysis and the lipase activity restricted the amount of free MCFA liberated during the GI digestion, resulting in incomplete lipids hydrolysis.


Asunto(s)
Ácidos Grasos , Lipólisis , Ácidos Grasos/análisis , Estómago/química , Hidrólisis , Digestión , Triglicéridos
3.
Chemosphere ; 286(Pt 2): 131637, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34340113

RESUMEN

Quantitative image analysis (QIA) was used for monitoring the morphology of activated sludge (AS) during a granulation process and, thus, to define and quantify, unequivocally, structural changes in microbial aggregates correlated with the sludge properties and granulation rates. Two sequencing batch reactors fed with acetate at organic loading rates of 1.1 ± 0.6 kgCOD m-3 d-1 (R1) and 2.0 ± 0.2 kgCOD m-3 d-1 (R2) and three minimal imposed sludge settling velocities (0.27 m h-1, 0.53 m h-1, and 5.3 m h-1) induced distinct granulation processes and rates. QIA results evidenced the turning point from flocculation to granulation processes by revealing the differences in the aggregates' stratification patterns and quantifying the morphology of aggregates with equivalent diameter (Deq) of 200 µm ≤ Deq ≤ 650 µm. Multivariate statistical analysis of the QIA data allowed to distinguish the granulation status in both systems, by clustering the observations according to the sludge aggregation and granules maturation status, and successfully predicting the sludge volume index measured at 5 min (SVI5) and 30 min (SVI30). These results evidence the possibility of defining unequivocally the granulation rate and anticipating the sludge settling properties at early stages of the process using QIA data. Hence, QIA could be used to predict episodes of granules disruption and hindered settling ability in aerobic granulation sludge processes.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Aerobiosis , Floculación , Eliminación de Residuos Líquidos
4.
Water Sci Technol ; 70(10): 1670-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25429456

RESUMEN

Textile dye wastewaters are characterized by strong colour, salts and other additives, high pH, temperature, chemical oxygen demand (COD) and biodegradable materials. Being aesthetically and environmentally unacceptable, these wastewaters need to be treated before their discharge. Anaerobic bioprocesses have been proposed as being environmentally friendly and relatively cheap; however, when applied to real effluent with a complex composition, they can fail. In this study, a photoreactor combining UV light and TiO2, immobilized in cellulosic fabric, was applied for the treatment of two industrial textile wastewaters. High colour and COD removal, and detoxification, were achieved for both wastewaters, at controlled pH of 5.5. Effluents showed very poor biodegradability due to their complex composition; thus, the proposed process is an efficient alternative.


Asunto(s)
Titanio/química , Rayos Ultravioleta , Eliminación de Residuos Líquidos/instrumentación , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/efectos de la radiación , Biodegradación Ambiental , Fotólisis , Industria Textil , Aguas Residuales/análisis
5.
Water Res ; 45(1): 191-200, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20813392

RESUMEN

Two upflow anaerobic sludge blanket (UASB) reactors were operated to investigate the fate of aromatic amines under denitrifying conditions. The feed consisted of synthetic wastewater containing aniline and/or sulfanilic acid and a mixture of volatile fatty acids (VFA) as the primary electron donors. Reactor 1 (R1) contained a stoichiometric concentration of nitrate and Reactor 2 (R2) a stoichiometric nitrate and nitrite mixture as terminal electron acceptors. The R1 results demonstrated that aniline could be degraded under denitrifying conditions while sulfanilic acid remains. The presence of nitrite in the influent of R2, caused a chemical reaction that led to immediate disappearance of both aromatic amines and the formation of an intense yellow coloured solution. HPLC analysis of the influent solution, revealed the emergence of three product peaks: the major one at retention time (R(t)) 14.3 min and two minor at R(t) 17.2 and 21.5 min. In the effluent, the intensity of the peaks at R(t) 14.3 and 17.2 min was very low and of that at R(t) 21.5 min increased (∼3-fold). Based on the mass spectrometry analysis, we propose the structures of some possible products, mainly azo compounds. Denitrification activity tests suggest that biomass needed to adapt to the new coloured compounds, but after a 3 days lag phase, activity is recovered and the final (N(2) + N(2)O) is even higher than that of the control.


Asunto(s)
Compuestos de Anilina/metabolismo , Biodegradación Ambiental , Reactores Biológicos , Desnitrificación , Ácidos Sulfanílicos/metabolismo , Eliminación de Residuos Líquidos/métodos , Cromatografía Líquida de Alta Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...