Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 13(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38201182

RESUMEN

Oxytetracycline (OTC), enrofloxacin (EFX), and sulfachloropyridazine (SCP) are critically important antimicrobials (AMs) in both human and veterinary medicine, where they are widely used in farm animals. Lettuce has become a matrix of choice for studying the presence of residues of these AMs in plants, as the concentrations of residues detected in lettuce can range from ng to mg. While several analytical methodologies have been developed for the purpose of detecting AMs in lettuce, these currently do not detect both the parent compound and its active metabolites or epimers, such as in the case of ciprofloxacin (CFX) and 4-epi-oxitetracycline (4-epi-OTC), which also pose a risk to public health and the environment due to their AM activity. In light of this situation, this work proposes an analytical method that was developed specifically to allow for the detection of OTC, 4-epi-OTC, EFX, CFX, and SCP in a lettuce matrix. This method uses acetonitrile, methanol, 0.5% formic acid, and McIlvaine-EDTA buffer as extraction solvents, and dispersive solid-phase extraction (dSPE) for the clean-up. The analytes were detected using a liquid chromatography technique coupled to mass spectrometry (HPLC-MS/MS). Parameters such as the specificity, linearity, recovery, precision, limit of detection, and limit (LOD) of quantification (LOQ) were calculated according to the recommendations established in the European Union decision 2021/808/EC and VICH GL2: Validation of analytical procedures. The LOQ for the analytes OTC, 4-epi-OTC, CFX, and SCP was 1 µg·kg-1, whereas for EFX, it was 5 µg·kg-1 dry weight. All calibration curves showed a coefficient of determination (R2) of >0.99. The recovery levels ranged from 93.0 to 110.5% and the precision met the acceptance criteria, with a coefficient of variation of ≤14.02%. Therefore, this methodology allows for the precise and reliable detection and quantification of these analytes. The analysis of commercial samples confirmed the suitability of this method.

2.
Antibiotics (Basel) ; 12(12)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38136686

RESUMEN

Oxytetracycline (OTC) is administered in the poultry industry for the treatment of digestive and respiratory diseases. The use of OTC may contribute to the selection of resistant bacteria in the gastrointestinal tract of birds or in the environment. To determine the effect of OTC on the selection of resistant Escherichia coli strains post-treatment, bacteria were isolated from droppings and litter sampled from untreated and treated birds. Bacterial susceptibility to tetracyclines was determined by the Kirby-Bauer test. A total of 187 resistant isolates were analyzed for the presence of tet(A), (B), (C), (D), (E), and (M) genes by PCR. Fifty-four strains were analyzed by PFGE for subtyping. The proportion of tetracycline-resistant E. coli strains isolated was 42.88%. The susceptibility of the strains was treatment-dependent. A high clonal diversity was observed, with the tet(A) gene being the most prevalent, followed by tet(C). Even at therapeutic doses, there is selection pressure on resistant E. coli strains. The most prevalent resistance genes were tet(A) and tet(C), which could suggest that one of the main mechanisms of resistance of E. coli to tetracyclines is through active efflux pumps.

3.
Animals (Basel) ; 11(6)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208604

RESUMEN

Antimicrobials premixes are the presentation of choice to administer drugs simultaneously to groups of animals in intensive husbandry systems that require treatment for pathologies of bacterial origin. Among the premixes available for use in poultry, florfenicol and oxytetracycline are commonly administered via food or water. However, their actual concentration in premixes must meet on-label statements to ensure plasma concentrations reach effective therapeutic levels. Hence, this work was designed for the purpose of verifying whether the concentration of antimicrobial present in five premixes matched their on-label statement. Three oxytetracycline premixes, and two of florfenicol, were analysed using a Xevo TQ-S micro UPLC-MS/MS, and an ABSciex API4000 HPLC-MS/MS, respectively. Analytical methodologies were implemented and validated, showing an R2 ≥ 0.99 for the calibration curves. Oxytetracycline was detected in these premixes at concentrations exceeding on-label statements by 13.28%, 21.54%, and 29.68%, whereas florfenicol concentrations detected in premixes were 13.06% and 14.75% lower than expected. Consequently, this work shows that the concentration of active ingredients that are present in commercial formulations effectively differ from those stated on premix labels, and it also highlights how unpredictable their range of variability might be. This must be addressed through solid and updated laws that guarantee an effective pharmaceutical product.

4.
Poult Sci ; 100(9): 101313, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34298383

RESUMEN

Antimicrobials are currently used in poultry for disease treatment. However, their excretion in bird feces may contaminate the environment. Considering this, the objective of this work was to quantify antimicrobials residues concentrations in therapeutically treated broiler chicken droppings throughout the post-treatment period. For this aim a multiresidue method using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was validated. Forty-eight male broiler chickens were distributed and treated with commercial formulations of 5 different antimicrobials. Results showed that oxytetracycline and 4-epi-oxytetracycline, presented the highest concentrations during all sampling period, detecting concentrations of 1471.41 µg kg-1 at the last sampling point (day 22 post-treatment). Florfenicol, tylosin, enrofloxacin, and ciprofloxacin were eliminated and detected in treated chicken droppings until d 18 post-treatment. Sulfachloropyridazine decrease gradually during post-treatment period until day 30. Results demonstrate that studied antimicrobials in treated chicken droppings were eliminated for prolonged periods, therefore becoming a significant route of residues dissemination into the environment.


Asunto(s)
Antiinfecciosos , Residuos de Medicamentos , Animales , Antibacterianos/análisis , Pollos , Cromatografía Líquida de Alta Presión/veterinaria , Residuos de Medicamentos/análisis , Masculino , Espectrometría de Masas en Tándem/veterinaria
5.
Animals (Basel) ; 11(5)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34069030

RESUMEN

Tetracyclines, sulphonamides, and quinolones are families of antimicrobials (AMs) widely used in the poultry industry and can excrete up to 90% of AMs administrated, which accumulate in poultry litter. Worryingly, poultry litter is widely used as an agriculture fertilizer, contributing to the spread AMs residues in the environment. The aim of this research was to develop a method that could simultaneously identify and quantify three AMs families in poultry litter by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Samples of AMs free poultry litter were used to validate the method according to 657/2002/EC and VICH GL49. Results indicate that limit of detection (LOD) ranged from 8.95 to 20.86 µg kg-1, while limits of quantitation (LOQ) values were between 26.85 and 62.58 µg kg-1 of tetracycline, 4-epi-tetracycline, oxytetracycline, 4-epi-oxytetracycline, enrofloxacin, ciprofloxacin, flumequine, sulfachloropyridazine, and sulfadiazine. Recoveries obtained ranged from 93 to 108%. The analysis of field samples obtained from seven commercial poultry flocks confirmed the adequacy of the method since it detected means concentrations ranging from 20 to 10,364 µg kg-1. This provides us an accurate and reliable tool to monitor AMs residues in poultry litter and control its use as agricultural fertilizer.

6.
Animals (Basel) ; 11(3)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802994

RESUMEN

Oxytetracycline (OTC) is widely used in broiler chickens. During and after treatment a fraction of OTC is excreted in its original form and as its epimer, 4-epi-OTC in droppings. To address the transfer of OTC into the environment, we evaluated the dissemination of OTC and 4-epi-OTC from treated birds to the environment and sentinels, through the simultaneous analysis of broiler droppings and litter. Male broiler chickens were bred in controlled conditions. One group was treated by orogastric tube with 80 mg kg-1 of OTC and two groups received no treatment (sentinels). OTC+4-epi-OTC were analyzed and detected by a HPLC-MS/MS post the end of treatment. The highest concentrations of OTC+4-epi-OTC were detected in the droppings of treated birds 14-days following the end of treatment (2244.66 µg kg-1), and one day following the end of treatment in the litter (22,741.68 µg kg-1). Traces of OTC+4-epi-OTC were detected in the sentinels' droppings and litter (<12.2 µg kg-1). OTC+4-epi-OTC can be transferred from treated birds to the environment and to other untreated birds. The presence and persistence of OTC+4-epi-OTC in litter could contribute to the selection of resistant bacteria in the environment, increasing the potential hazard to public and animal health.

7.
Artículo en Inglés | MEDLINE | ID: mdl-31535930

RESUMEN

Lincomycin is the first antimicrobial agent described for the lincosamide class and it is commonly used for the treatment of infectious enteric and respiratory diseases in poultry. Maximum residue limits (MRLs) in edible tissues have been established for this antimicrobial, however, no regulation has been proposed yet for by-products that are not intended for direct human consumption. Feathers are a by-product from poultry farming that might be used as an ingredient for diets fed to other farm animal species. The presence of antimicrobial residues in them is not monitored in spite of the fact that several studies have proved that they can persist in feathers. Currently though, no evidence has been presented regarding the behaviour of lincomycin in this matrix. Hence, this work intended to assess the depletion of lincomycin residues in feathers of birds treated with therapeutic doses and compare them with those detected in muscle and liver samples. Samples were collected for several days after ceasing treatment from a group of broiler chickens treated with a 25% lincomycin formulation. Methanol and Florisil® columns were used to extract and retain the analyte, and samples were analysed using a triple quadrupole mass spectrometer (API 5500, AB SCIEX™). On day 1 after ceasing treatment, average concentrations of lincomycin detected in feather samples reached up to 8582 µg kg-1 and by day 16, these had only declined by 63%, to an average of 3138 µg kg-1. Lincomycin residues were detected in feathers at every sampling point, even after they were not detectable in edible tissues. Depletion time was 98 days for feathers, considering the LOQ established for the methodology as cut-off value for the calculations. Data showed that lincomycin is highly persistent in feathers, which may result in this matrix becoming a re-entry route for its residues into the food chain.


Asunto(s)
Residuos de Medicamentos/análisis , Lincomicina/análisis , Hígado/química , Músculos/química , Animales , Pollos , Plumas/química
8.
J Anal Methods Chem ; 2019: 4569707, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30931158

RESUMEN

Recent studies have detected different antimicrobial residues in broiler chicken feathers, where they persisted for longer periods of time and at greater concentrations than in edible tissues. However, until today, lincomycin behaviour in this nonedible tissue has not been assessed yet. Considering this, an analytical methodology to detect and quantify this antibiotic concentration in feathers, muscle, and liver tissues from broiler chickens was implemented and in-house validated. The methodology will allow the determination of the bioaccumulation of this highly persistent antibiotic in feathers of treated birds. For this purpose, 98% lincomycin and 95% lincomycin D3 standards were used. Methanol was selected as the extraction solvent, and Chromabond® Florisil® cartridges were used for the clean-up stage. The separation of analytes was performed through the analytical column SunFire C18 with a running time of 4 minutes, and the instrumental analysis was performed through an LC-MS/MS, with a liquid chromatograph Agilent® 1290 Infinity, coupled to an AB SCIEX® API 5500 mass spectrometer. An internal protocol for an in-house validation was designed based on recommendations from Commission Decision 2002/657/EC and the Guidance document on the estimation of limit of detection and limit of quantification for measurements in the field of contaminants in feed and food. The average retention time for lincomycin was 2.255 min (for quantifier ion, 126.0). The calibration curves showed a coefficient of determination (r 2) greater than 0.99 for all matrices, while recovery levels ranged between 98% and 101%. The limit of detection (LOD) calculated was of 19, 22, and 10 µg·kg-1, and the limit of quantification (LOQ) was of 62, 73, and 34 µg·kg-1 in feathers, muscle, and liver, respectively. This method detects lincomycin in the studied matrices, confidently and accurately, as it is required for designing analytical studies of drug residues in edible and nonedible tissues, such as feathers.

9.
Artículo en Inglés | MEDLINE | ID: mdl-30583470

RESUMEN

Tetracyclines, sulfonamides and amphenicols are broad spectrum antimicrobial drugs that are widely used in poultry farming. However, a high proportion of these drugs can be excreted at high concentrations in droppings, even after the end of a therapy course. This work intended to assess and compare concentrations of florfenicol (FF), florfenicol amine (FFa), chlortetracycline (CTC), 4-epi-chlortetracycline (4-epi-CTC), and sulfachloropyridazine (SCP) in broiler chicken droppings. To this end, 70 chickens were housed under controlled environmental conditions, and assigned to experimental groups that were treated with therapeutic doses of either 10% FF, 20% CTC, or 10% SCP. Consequently, we implemented and designed an in-house validation for three analytical methodologies, which allowed us to quantify the concentrations of these three antimicrobial drugs using liquid chromatography coupled to mass spectrometry (LC-MS/MS). Our results showed that FF and FFa concentrations were detected in chicken droppings up to day 10 after ceasing treatment, while CTC and 4-epi-CTC were detected up to day 25. As for SCP residues, these were detected up to day 21. Noticeably, CTC showed the longest excretion period, as well as the highest concentrations detected after the end of its administration using therapeutic doses.


Asunto(s)
Antibacterianos/análisis , Residuos de Medicamentos/análisis , Contaminantes Ambientales/análisis , Heces/química , Animales , Antibacterianos/farmacocinética , Pollos/metabolismo , Cromatografía Liquida , Residuos de Medicamentos/farmacocinética , Contaminantes Ambientales/farmacocinética , Reproducibilidad de los Resultados , Medición de Riesgo , Espectrometría de Masas en Tándem
10.
Molecules ; 23(9)2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-30200340

RESUMEN

Antimicrobial residues might persist in products and by-products destined for human or animal consumption. Studies exploring the depletion behavior of florfenicol residues in broiler chicken claws are scarce, even though claws can enter the food chain directly or indirectly. Hence, this study intended to assess the concentrations of florfenicol (FF) and florfenicol amine (FFA)-its active metabolite-in chicken claws from birds that were treated with a therapeutic dose of florfenicol. Furthermore, concentrations of these analytes in this matrix were compared with their concentrations in edible tissues at each sampling point. A group of 70 broiler chickens were raised under controlled conditions and used to assess residue depletion. Sampling points were on days 5, 10, 20, 25, 30, 35, and 40 after ceasing treatment, thus extending beyond the withdrawal period established for muscle tissue (30 days). Analytes were extracted using HPLC-grade water and acetone, and dichloromethane was used for the clean-up stage. Liquid chromatography coupled to mass spectroscopy detection (LC⁻MS/MS) was used to detect and quantify the analytes. The analytical methodology developed in this study was validated in-house and based on the recommendations described in the Commission Decision 2002/657/EC from the European Union. Analyte concentrations were calculated by linear regression analysis of calibration curves that were fortified using an internal standard of chloramphenicol-d5 (CAF-d5). The depletion time of FF and FFA was set at 74 days in claws, based on a 95% confidence level and using the limit of detection (LOD) as the cut-off point. Our findings show that FF and FFA can be found in chicken claws at higher concentrations than in muscle and liver samples at each sampling point.


Asunto(s)
Pollos/anatomía & histología , Pollos/metabolismo , Especificidad de Órganos , Espectrometría de Masas en Tándem/métodos , Tianfenicol/análogos & derivados , Animales , Cromatografía Liquida , Carne , Estándares de Referencia , Reproducibilidad de los Resultados , Tianfenicol/análisis
11.
PLoS One ; 13(7): e0200206, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29975750

RESUMEN

Several antimicrobials are routinely used by the poultry farming industry on their daily operations, however, researchers have found for some antimicrobials that their residues persist for longer periods in feathers than they do in edible tissues, and at higher concentrations, as well. But this information is not known for other classes of antimicrobials, such as the sulfonamides. Therefore, this work presents an accurate and reliable analytical method for the detection of sulfachloropyridazine (SCP) in feathers and edible tissues from broiler chickens. This method was also validated in-house and then used to study the depletion of sulfachloropyridazine in those matrices. The experimental group comprised 54 broiler chickens, who were raised under controlled conditions and then treated with a commercial formulation of 10% sulfachloropyridazine for 5 days. Samples were analyzed via LC-MS/MS, using 13C6-sulfamethazine (SMZ-13C6) as an internal standard. Aromatic sulfonic acid solid phase extraction (SPE) cartridges were used to clean up the samples. The Limit of Detection (LOD) for this method was set at 10 µg kg-1 on feathers and liver; and at 5 µg kg-1 on muscle. Within the range of 10-100 µg kg-1, the calibration curves for all matrices presented a determination coefficient greater than 0.96. Our results show, with a 95% confidence level, that sulfachloropyridazine persisted in feathers for up to 55 days after ceasing treatment, and its concentrations were higher than in edible tissues. In consequence, to avoid re-entry of antimicrobial residues into the food-chain, we recommend monitoring and inspecting animal diets that contain feather derivatives, such as feathers meals, because they could be sourced from birds that might have been medicated with sulfachloropyridazine.


Asunto(s)
Residuos de Medicamentos/análisis , Plumas/química , Sulfaclorpiridazina/análisis , Administración Oral , Animales , Antibacterianos/administración & dosificación , Antiinfecciosos/análisis , Pollos/fisiología , Cromatografía Liquida/métodos , Límite de Detección , Músculos/química , Extracción en Fase Sólida , Sulfaclorpiridazina/administración & dosificación , Sulfaclorpiridazina/química , Sulfonamidas/análisis , Espectrometría de Masas en Tándem/métodos
12.
Molecules ; 23(6)2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29799472

RESUMEN

Tetracyclines are important antimicrobial drugs for poultry farming that are actively excreted via feces and urine. Droppings are one of the main components in broiler bedding, which is commonly used as an organic fertilizer. Therefore, bedding becomes an unintended carrier of antimicrobial residues into the environment and may pose a highly significant threat to public health. For this depletion study, 60 broiler chickens were treated with 20% chlortetracycline (CTC) under therapeutic conditions. Concentrations of CTC and 4-epi-CTC were then determined in their droppings. Additionally, this work also aimed to detect the antimicrobial activity of these droppings and the phenotypic susceptibility to tetracycline in E. coli isolates, as well as the presence of tet(A), tet(B), and tet(G) resistance genes. CTC and 4-epi-CTC concentrations that were found ranged from 179.5 to 665.8 µg/kg. Based on these data, the depletion time for chicken droppings was calculated and set at 69 days. All samples presented antimicrobial activity, and a resistance to tetracyclines was found in bacterial strains that were isolated from these samples. Resistance genes tet(A) and tet(B) were also found in these samples.


Asunto(s)
Antibacterianos/aislamiento & purificación , Antiportadores/genética , Proteínas Bacterianas/genética , Clortetraciclina/aislamiento & purificación , Residuos de Medicamentos/aislamiento & purificación , Infecciones por Escherichia coli/veterinaria , Enfermedades de las Aves de Corral/prevención & control , Animales , Animales Recién Nacidos , Antibacterianos/farmacología , Antiportadores/metabolismo , Proteínas Bacterianas/metabolismo , Pollos , Clortetraciclina/farmacología , Residuos de Medicamentos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/prevención & control , Heces/química , Expresión Génica , Masculino , Pruebas de Sensibilidad Microbiana , Enfermedades de las Aves de Corral/microbiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-29111882

RESUMEN

Tylosin is one of the most commonly used antimicrobial drugs from the macrolide family and in broiler chickens it is used specially for the treatment of infectious pathologies. The poultry industry produces several by-products, among which feathers account for up to 7% of a chicken's live weight, thus they amount to a substantial mass across the whole industry. Feathers have been repurposed as an animal feed ingredient by making them feather meal. Therefore, the presence of high concentrations of residues from antimicrobial drugs in feathers might pose a risk to global public health, due to re-entry of these residues into the food chain. This work aimed to characterise the depletion behaviour of tylosin in feather samples, while considering its depletion in muscle and liver tissue samples as a reference point. To achieve this goal, we have implemented and validated an analytical methodology suitable for detecting and quantifying tylosin in these matrices. Sixty broiler chickens, raised under controlled conditions, received an oral dose of 32 mg kg-1 of tylosin for 5 days. Tylosin was quantified in muscle, liver and feathers by liquid chromatography coupled with a photodiode array detector (HPLC-DAD). High concentrations of tylosin were detected in feather samples over the whole experimental period after completing both the therapy and the recommended withdrawal time (WDT). On the other hand, tylosin concentrations in muscle and liver tissue samples fell below the limit of detection of this method on the first sampling day. Our results indicate that the WDT for feather samples is 27 days, hence using feather meal for the formulation of animal diets or for other agricultural purposes could contaminate with antimicrobial residues either other livestock species or the environment. In consequence, we recommend monitoring this matrix when birds have been treated with tylosin, within the context of poultry farming.


Asunto(s)
Antibacterianos/análisis , Antibacterianos/uso terapéutico , Residuos de Medicamentos/análisis , Plumas/química , Hígado/química , Músculos/química , Tilosina/análisis , Tilosina/uso terapéutico , Animales , Pollos , Factores de Tiempo
14.
J Food Prot ; 80(4): 619-625, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28291385

RESUMEN

Antibiotics have been widely used in poultry production for the treatment of bacterial diseases. However, drug residues can remain in products derived from animals after the cessation of the drug therapies. Feathers, in particular, have shown an affinity for antibiotics such as tetracycline, suggesting the persistence of these drugs in nonedible tissue. After the birds are slaughtered, feathers are ground into feather meals, which are used as organic fertilizer or an ingredient in animal diets, thereby entering into the food chain and becoming a potential risk for public health. To evaluate the depletion of oxytetracycline (OTC) and its metabolite 4-epi-oxytetracycline (4-epi-OTC) in the muscles, liver, and feathers, 64 broiler chickens, bred under controlled conditions, were treated orally with a commercial formulation of 10% OTC for 7 days. The analytes were quantified using liquid chromatography-tandem mass spectrometry. OTC and 4-epi-OTC were found in the feathers for 46 days, whereas they were found in the muscle and liver for only 12 and 6 days, respectively. These results prove that the analytes remain in feathers in higher concentrations than they do in edible tissues after treatment with tetracyclines. Thus, feather meals represent a potential source of antimicrobial residue contamination in the food chain.


Asunto(s)
Residuos de Medicamentos , Oxitetraciclina/análisis , Espectrometría de Masas en Tándem , Animales , Antibacterianos , Pollos/metabolismo , Cromatografía Liquida , Plumas
15.
J Food Prot ; 77(6): 1017-21, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24853528

RESUMEN

Antimicrobials administered to laying hens may be distributed into egg white or yolk, indicating the importance of evaluating withdrawal times (WDTs) of the pharmaceutical formulations. In the present study, oxytetracycline and tylosin's WDTs were estimated. The concentration and depletion of these molecules in eggs were linked to their pharmacokinetic and physicochemical properties. Twenty-seven Leghorn hens were used: 12 treated with oxytetracycline, 12 treated with tylosin, and 3 remained as an untreated control group. After completion of therapies, eggs were collected daily and drug concentrations in egg white and yolk were assessed. The yolk was used as the target tissue to evaluate the WDT; the results were 9 and 3 days for oxytetracycline and tylosin, respectively. In particular, oxytetracycline has a good oral bioavailability, a moderate apparent volume of distribution, a molecular weight of 460 g/mol, and is lightly liposoluble. Tylosin, a hydrosoluble compound, with a molecular weight of 916 g/mol, has a low oral bioavailability and a low apparent volume of distribution, too. Present results suggest that the WDTs of the studied antimicrobials are strongly influenced by their oral bioavailability, the distribution, and the molecular weight and solubility, and that these properties also influence the distribution between the egg yolk and white.


Asunto(s)
Antibacterianos/análisis , Pollos/fisiología , Residuos de Medicamentos/análisis , Huevos/análisis , Oxitetraciclina/análisis , Enfermedades de las Aves de Corral/fisiopatología , Tilosina/análisis , Administración Oral , Animales , Antibacterianos/administración & dosificación , Antiinfecciosos , Femenino , Oviparidad , Oxitetraciclina/administración & dosificación , Enfermedades de las Aves de Corral/tratamiento farmacológico , Factores de Tiempo , Tilosina/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...