Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aging (Albany NY) ; 16(5): 4116-4137, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38441530

RESUMEN

Cellular senescence is a permanent cell cycle arrest that can be triggered by both internal and external genotoxic stressors, such as telomere dysfunction and DNA damage. The execution of senescence is mainly by two pathways, p16/RB and p53/p21, which lead to CDK4/6 inhibition and RB activation to block cell cycle progression. While the regulation of p53/p21 signaling in response to DNA damage and other insults is well-defined, the regulation of the p16/RB pathway in response to various stressors remains poorly understood. Here, we report a novel function of PR55α, a regulatory subunit of PP2A Ser/Thr phosphatase, as a potent inhibitor of p16 expression and senescence induction by ionizing radiation (IR), such as γ-rays. The results show that ectopic PR55α expression in normal pancreatic cells inhibits p16 transcription, increases RB phosphorylation, and blocks IR-induced senescence. Conversely, PR55α-knockdown by shRNA in pancreatic cancer cells elevates p16 transcription, reduces RB phosphorylation, and triggers senescence induction after IR. Furthermore, this PR55α function in the regulation of p16 and senescence is p53-independent because it was unaffected by the mutational status of p53. Moreover, PR55α only affects p16 expression but not p14 (ARF) expression, which is also transcribed from the same CDKN2A locus but from an alternative promoter. In normal human tissues, levels of p16 and PR55α proteins were inversely correlated and mutually exclusive. Collectively, these results describe a novel function of PR55α/PP2A in blocking p16/RB signaling and IR-induced cellular senescence.


Asunto(s)
Proteína Fosfatasa 2 , Proteína p53 Supresora de Tumor , Humanos , Senescencia Celular/fisiología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteína p14ARF Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo
2.
Neoplasia ; 23(12): 1192-1203, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34731788

RESUMEN

We have previously reported an important role of PR55α, a regulatory subunit of PP2A Ser/Thr phosphatase, in the support of critical oncogenic pathways required for oncogenesis and the malignant phenotype of pancreatic cancer. The studies in this report reveal a novel mechanism by which the p53 tumor suppressor inhibits the protein-stability of PR55α via FBXL20, a p53-target gene that serves as a substrate recognition component of the SCF (Skp1_Cullin1_F-box) E3 ubiquitin ligase complex that promotes proteasomal degradation of its targeted proteins. Our studies show that inactivation of p53 by siRNA-knockdown, gene-deletion, HPV-E6-mediated degradation, or expression of the loss-of-function mutant p53R175H results in increased PR55α protein stability, which is accompanied by reduced protein expression of FBXL20 and decreased ubiquitination of PR55α. Subsequent studies demonstrate that knockdown of FBXL20 by siRNA mimics p53 deficiency, reducing PR55α ubiquitination and increasing PR55α protein stability. Functional tests indicate that ectopic p53R175H or PR55α expression results in an increase of c-Myc protein stability with concomitant dephosphorylation of c-Myc-T58, which is a PR55α substrate, whose phosphorylation otherwise promotes c-Myc degradation. A significant increase in anchorage-independent proliferation is also observed in normal human pancreatic cells expressing p53R175H or, to a greater extent, overexpressing PR55α. Consistent with the common loss of p53 function in pancreatic cancer, FBXL20 mRNA expression is significantly lower in pancreatic cancer tissues compared to pancreatic normal tissues and low FBXL20 levels correlate with poor patient survival. Collectively, these studies delineate a novel mechanism by which the p53/FBXL20 axis negatively regulates PR55α protein stability.


Asunto(s)
Proteínas F-Box/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Humanos , Estabilidad Proteica , Transducción de Señal/fisiología
3.
Front Immunol ; 11: 95, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32076422

RESUMEN

Recent spread of the promoter variant (4-κB) Human immunodeficiency virus-1 clade C (HIV-1C) strain is attributed to duplication of the Nuclear Factor Kappa B (NF-κB) binding sites and potential increased heroin consumption in India. To study the underlying biology of 4-κB HIV-1C in rhesus macaques, we engineered a promoter-chimera variant (4NF-κB) Simian Human Immunodeficiency Virus (SHIV) by substituting the HIV-1C Long Terminal Repeat (LTR) region consisting of 4 NF-κB and 3 Sp-1 sites with the corresponding segment in the LTR of SHIV AD8EO. The wild-type (3NF-κB) promoter-chimera SHIV was generated by inactivating the 5' proximal NF-κB binding site in SHIV 4NF-κB. CD8-depleted rhesus macaque PBMCs (RM-PBMCs) were infected with the promoter-chimera and AD8EO SHIVs to determine the effects of opioid-exposure on inflammation, NF-κB activation, neurotoxicity in neuronal cells and viral replication. Morphine-exposure of RM-PBMCs infected with SHIVs 4NF-κB, 3NF-κB, and AD8EO altered cellular transcript levels of monocyte chemoattractant protein 1, interleukin 6, interleukin 1ß, and Tumor Necrosis Factor α. Of note, divergent alteration of the cytokine transcript levels was observed with these promoter-chimera wild-type and variant SHIVs. NF-κB activation was observed during infection of all three SHIVs with morphine-exposure. Finally, we observed that SHIV AD8EO infection and exposure to both morphine and naloxone had the greatest impact on the neurotoxicity. The promoter-chimera SHIV 4NF-κB and SHIV 3NF-κB did not have a similar effect on neurotoxicity as compared to SHIV AD8EO. All SHIVs replicated efficiently at comparable levels in RM-PBMCs and morphine-exposure did not alter viral replication kinetics. Future in vivo studies in rhesus macaques will provide greater understanding of 4-κB HIV-1C viral immunopathogenesis and onset of disease in the central nervous system during morphine-exposure.


Asunto(s)
Infecciones por VIH/genética , VIH-1/efectos de los fármacos , VIH-1/genética , FN-kappa B/genética , Replicación Viral/genética , Analgésicos Opioides/farmacología , Animales , Infecciones por VIH/virología , Humanos , Inflamación/virología , Macaca mulatta , Regiones Promotoras Genéticas/genética , Virus de la Inmunodeficiencia de los Simios , Quimera por Trasplante/genética , Quimera por Trasplante/virología
4.
Stem Cells Int ; 2019: 8710180, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31191687

RESUMEN

The identification of several evolutionary young miRNAs, which arose in primates, raised several possibilities for the role of such miRNAs in human-specific disease processes. We previously have identified an evolutionary young miRNA, miR-1290, to be essential in neural stem cell proliferation and neuronal differentiation. Here, we show that miR-1290 is significantly downregulated during neuronal differentiation in reprogrammed induced pluripotent stem cell- (iPSC-) derived neurons obtained from idiopathic autism spectrum disorder (ASD) patients. Further, we identified that miR-1290 is actively released into extracellular vesicles. Supplementing ASD patient-derived neural stem cells (NSCs) with conditioned media from differentiated control-NSCs spiked with "artificial EVs" containing synthetic miR-1290 oligonucleotides significantly rescued differentiation deficits in ASD cell lines. Based on our earlier published study and the observations from the data presented here, we conclude that miR-1290 regulation could play a critical role during neuronal differentiation in early brain development.

5.
PLoS Negl Trop Dis ; 12(10): e0006811, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30359380

RESUMEN

Due to the large geographical overlap of populations exposed to Zika virus (ZIKV) and human immunodeficiency virus (HIV), understanding the disease pathogenesis of co-infection is urgently needed. This warrants the development of an animal model for HIV-ZIKV co-infection. In this study, we used adult non-pregnant macaques that were chronically infected with simian immunodeficiency virus/chimeric simian human immunodeficiency virus (SIV/SHIV) and then inoculated with ZIKV. Plasma viral loads of both SIV/SHIV and ZIKV co-infected animals revealed no significant changes as compared to animals that were infected with ZIKV alone or as compared to SIV/SHIV infected animals prior to ZIKV inoculation. ZIKV tissue clearance of co-infected animals was similar to animals that were infected with ZIKV alone. Furthermore, in co-infected macaques, there was no statistically significant difference in plasma cytokines/chemokines levels as compared to prior to ZIKV inoculation. Collectively, these findings suggest that co-infection may not alter disease pathogenesis, thus warranting larger HIV-ZIKV epidemiological studies in order to validate these findings.


Asunto(s)
Coinfección/patología , Síndrome de Inmunodeficiencia Adquirida del Simio/complicaciones , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Infección por el Virus Zika/complicaciones , Infección por el Virus Zika/patología , Animales , Citocinas/sangre , Modelos Animales de Enfermedad , Femenino , Macaca mulatta , Plasma/química , Plasma/virología , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...