Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Health Sci Eng ; 19(1): 1075-1086, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34150296

RESUMEN

This work deals an experimental and theoretical research about the porous structure and the acoustic performance of cellulose acetate coming from the used cigarette filters. The porous structure was studied through the measurement and the prediction (using an inverse methodology) of some non-acoustic properties (bulk density, fiber size, porosity or flow resistivity and tortuosity). The sound absorption performance was evaluated by comparing experimental measurements using an impedance tube according to ISO 10534-2 with the best-fit approach obtained using some empirical models (Delany and Bazley, Garai-Pompoli, Komatsu and Miki). The accuracy of empirical models to obtain the flow resistivity was relatively high showing differences lower than 8% in the case of the Miki model or lower than 12% in the case of Delany & Bazley model. Regarding the absorption spectra, the errors found were lower than 9% for all the empirical models used in this work. These results showed that using relatively simple models such as empirical models were able to predict accurately the acoustic behaviour of the cellulose acetate. Finally, the sound absorption spectra obtained for cellulose acetate were compared with those obtained for fibrous materials currently used in building sector, suggesting that this fibrous waste could act as a possible substitute to traditional ones, due to the similar relatively high NRC values obtained for both type of fibrous absorber (NRC = 0.65).

2.
Sci Total Environ ; 786: 147461, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-33965830

RESUMEN

This paper presents the results of an experimental study on the acoustic efficiency of plastic surgical face masks. Since the very high number of disposable masks being used globally on a daily basis to face the Covid19 pandemic is posing new environmental risks, mainly connected to improper disposal, any possible improvements in the management of this waste stream is very important. In this work their potential use as sound porous absorber is discussed. Surgical face masks are mainly made of polypropylene fibers which show good acoustical properties. Their porous structure was studied through the measurement of some non-acoustic properties: bulk density, fiber diameter, porosity, flow resistivity and tortuosity. Moreover, the sound absorption performance of samples, made of scrapped face masks, with different thicknesses was evaluated using an impedance tube according to ISO 10534-2. The results obtained from the sound absorption spectra and two single indexes, Noise Reduction Coefficient and Sound Absorption Average showed a high sound absorption value over a frequency range of interest. Finally, the sound absorption spectra obtained for surgical face masks were compared with those obtained for fibrous materials currently used in building sector, suggesting that this fibrous waste could act as a possible substitute to traditional ones.


Asunto(s)
COVID-19 , Máscaras , Humanos , Modelos Teóricos , Porosidad , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...