Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Divers ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884873

RESUMEN

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that is now potentially lethal and has a significant detrimental influence on people's daily lives by affecting bone joints. Inflammation plays a vital role in this type of autoimmune disorder. In rheumatoid arthritis, long-term production of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1) stimulates the immune system against cells in bone joints and helps to develop the pathogenesis of rheumatoid arthritis. So, while treating rheumatoid arthritis, we need to block these kinds of mechanisms. We employed soxhlet extraction, thin-layer chromatography (TLC), and gas chromatography-mass spectroscopy (GC-MS) to analyze the phytocompound information in E. hirta leaves. Furthermore, our research included in vitro investigations using Western blotting and mRNA expression analysis (TNF-α, IL-1ß, IL-6) to affirm the anti-inflammatory effectiveness of our extract. For identifying the lead-like molecules, virtual screening and molecular dynamics simulations were used. TLC results confirmed the presence of phytocompounds in E. hirta crude through spots. The structure elucidation of the phytocompounds was confirmed by the GC-MS chromatogram. The in vitro outcomes collectively underscore the inhibitory influence of E. hirta on cell proliferation and its capacity to attenuate the expression of TNF- α within THP-1 cells. The results of in silico methodologies confirmed six lead-like molecules. We could conclude that phytocompounds from ethanol leaf crude have effective lead-like molecules against the TNF-α.

2.
J Biomol Struct Dyn ; 40(23): 13233-13245, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34606422

RESUMEN

In this present study, we have determined the crystal structure of 2-acetamidophenyl acetate (2-AAPA) commonly used as influenza neuraminidase inhibitor, to analyze the polymorphism. Molecular docking and molecular dynamics have been performed for the 2-AAPA-neuraminidase complex as the ester-derived benzoic group shows several biological properties. The X-ray diffraction studies confirmed that the 2-AAPA crystals are stabilized by N-H···O type of intermolecular interactions. Possible conformers of 2-AAPA crystal structures were computationally predicted by ab initio methods and the stable crystal structure was identified. Hirshfeld surface analysis of both experimental and predicted crystal structure exhibits the intermolecular interactions associated with 2D fingerprint plots. The lowest docking score and intermolecular interactions of 2-AAPA molecule against influenza neuraminidase confirm the binding affinity of the 2-AAPA crystals. The quantum theory of atoms in molecules analysis of these intermolecular interactions was implemented to understand the charge density redistribution of the molecule in the active site of influenza neuraminidase to validate the strength of the interactions.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Acetatos , Neuraminidasa , Orthomyxoviridae , Acetatos/química , Acetatos/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Neuraminidasa/antagonistas & inhibidores , Orthomyxoviridae/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA